簡易檢索 / 詳目顯示

研究生: 陳祈宏
論文名稱: 高效能精微線切割放電加工電源開發
Development of a high-efficiency micro wire electrical discharge machining (w-EDM) power source
指導教授: 陳順同
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 185
中文關鍵詞: 精微線切割放電加工多重「電阻-電容」放電電源火花腐蝕能力切割效能評估準則
英文關鍵詞: micro w-EDM, plural RC power source, spark erosion ability, cutting performance assessment criterion
論文種類: 學術論文
相關次數: 點閱:232下載:45
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般「電阻-電容」放電電源雖能提供短脈衝及高峰值的放電電流,獲得 更小及更淺的放電坑,但因加工效能低,未被廣泛採用。本研究旨在開發一 種高效能的多重「電阻-電容」放電電源(Plural RC power source),並應用於高 熔點高硬度金屬的精微線切割放電加工。多重「電阻-電容」放電迴路係由場 效可程式化邏輯閘陣列(Field Progra mmable Gate Array)、「電阻-電容」、電 晶體驅動電路與放電迴路所組成。透由邏輯閘控制每組「電阻-電容」的電晶 體開關時間,使每組電容器能在規劃的時間內,產生充放電波列。實驗規劃 分別選用1 組及3 組「電阻-電容」電源以及商用電晶體電源,對常用金屬(銅 合金及鋁合金)與高熔點高硬度金屬(碳化鎢、導電陶瓷及含硼聚晶鑽石)進行 線切割放電加工。由加工結果發現,多重「電阻-電容」電源的放電頻率與切 割進給率分別可達單「電阻-電容」電源的3 倍及2 倍以上,而加工時間可節 省40%以上;在火花腐蝕能力(Spark erosion ability)方面,單「電阻-電容」的 電源表現最好,多重「電阻-電容」的電源次之,電晶體電源又次之。為判斷 放電電源的工作效能,本研究提出「精微放電加工切割效能評估準則(Cutting performance assessment criterion)」,並發現多重「電阻-電容」電源,其切割 效能比商用電晶體電源好,且具較低的鈷析出量,證實本研究開發的多重「電 阻-電容」放電電源,具高頻放電性能,極間恢復絕緣時間快,材料熱影響區 少,且單位時間的金屬移除率多。期待此多重「電阻-電容」電源的研發,著 實能貢獻到精微製造產業。

    The resistance-capacitance (RC) circuit effortlessly provides a discharge current with a short pulse and a high peak which leads to a very shallow and narrow discharge cavity. However, it has not been widely employed due to low production efficiency. The primary objective of this thesis is to develop a high-efficiency power source with plural RC discharge circuit and use it in cutting the high melting point metal. The plural RC discharge circuit is consisted of a Field-Programmable Gate Array (FPGA) device, plural resistor-capacitor, transistors base driving circuit and a discharge circuit. Each transistor that switches the discharge time for the corresponding RC circuit is controlled by the designed FPGA to generate a charge/discharge pulse train in time. By applying the developed power sources of single- and plural- RC circuits, and the commercial transistor power, experiments are conducted in cutting the often used metal (copper and aluminum alloy) and high melting point metal (tungsten carbide, conductive ceramic and boron-doped polycrystalline composite diamond). The test results indicated that the discharge frequency and cutting feed-rate in plural RC power are approximately 3- and 2- times for the single RC power, respectively, In addition, the machining time can be reduced to 40% above. In Spark Erosion Ability (SEA), the single RC power is better than that of plural RC and the plural RC better than that of the transistor. To determine the working efficiency of the power source in micro wire electrical discharge machining (w-EDM), a ‘cutting performance assessment criterion’ is proposed in this study. Comparing with the commercial transistor power, the plural RC power is superior in cutting performance and has lower amounts of cobalt deposition. Experimental results verified that the developed plural RC power source owns the high-frequency discharge performance and fast insulation recovery time resulting in a smaller heat-affected zone and creating more Metal Removal Rate (MRR). It is expected that the developed plural RC power source can be contributed significantly to the micro fabrication industry.

    摘要 I Abstract II 目錄 III 表目錄 VIII 圖目錄 XI 符號說明 XVIII 第一章 緒論 1 1-1 前言 1 1-2 文獻探討 3 1-2-1 放電加工發展歷程 3 1-2-2 放電加工之電源設計 6 1-3 研究動機 13 1-4 研究目的 15 1-5 研究方法 16 第二章 實驗原理與應用 18 2-1放電加工原理 18 2-1-1放電加工現象說明 18 2-1-2放電加工材料移除機制 19 2-1-3放電加工工作參數 21 2-2常用精微放電加工法 25 2-2-1精微雕模放電加工 25 2-2-2精微線切割放電加工 26 2-2-3精微旋轉式放電加工 28 2-3放電電源系統 29 2-3-1依放電電源分類 29 2-3-2依放電能量分類 32 2-4電晶體切換原理 34 2-4-1 金屬-氧化物-半導體場效電晶體之切換特性 34 2-4-2元件損失 35 2-4-3硬性切換(Stress switching) 36 2-4-4柔性切換(Soft switching) 37 第三章 實驗所需設備與儀器 38 3-1 元件可程式邏輯閘陣列(FPGA) 38 3-2 硬體描述語言(VHDL)編輯軟體 40 3-3 精微線切割放電加工機 42 3-4 高速主軸選用 44 3-5量測儀器設備 45 3-5-1 工具顯微鏡(Toolmakers microscope) 45 3-5-2 掃描式電子顯微鏡(Scanning electron microscope) 45 3-5-3 3D雷射掃描式共軛焦顯微鏡(3D Laser scanning microscope) 46 3-5-4混合訊號示波器(Mixed signal oscilloscopes) 47 3-6 實驗所用材料 49 3-6-1 微細銅線(細線電極) 49 3-6-2 銅合金(試切工件) 49 3-6-3 鋁合金(試切工件) 50 3-6-4 碳化鎢(試切工件) 51 3-6-5 導電陶瓷(試切工件) 51 3-6-6 含硼聚晶鑽石(試切工件) 52 第四章 高效能精微放電電源開發 54 4-1 多重「電阻-電容」放電電源之電路設計 55 4-2 多重「電阻-電容」放電電源之脈波控制訊號設計 58 4-3多重「電阻-電容」放電電源之實現 63 4-3-1多重「電阻-電容」放電電源設計 63 4-3-2 電晶體驅動電路設計 64 4-4 多重「電阻-電容」放電電源測試 66 4-4-1多重「電阻-電容」放電電源之限流電阻實驗 66 4-4-2 多重「電阻-電容」放電電源之工作電容設定 67 4-4-3 多重「電阻-電容」放電電源之「電阻-電容」組數設定 68 4-5精微線切割放電加工機構設置 71 4-5-1微細銅線送線速度對進給率比較 71 4-5-2放電加工液對切割效能的比較 72 4-6 多重「電阻-電容」放電波列之放電狀態分析 74 第五章 精微線切割放電加工電源驗證 77 5-1不同放電電源對鋁合金放電加工的影響探討 77 5-1-1不同放電電源對鋁合金移除率的比較 77 5-1-2不同放電電源對鋁合金表面粗糙度的影響 84 5-1-3不同放電電源對鋁合金尺寸精度的影響 93 5-2不同放電電源對銅合金放電加工的影響探討 96 5-2-1不同放電電源對銅合金移除率的比較 96 5-2-2不同放電電源對銅合金表面粗糙度的影響 103 5-2-3不同放電電源對銅合金尺寸精度的影響 109 5-3不同放電電源對碳化鎢放電加工的影響探討 112 5-3-1不同放電電源對碳化鎢移除率的比較 112 5-3-2不同放電電源對碳化鎢表面粗糙度的影響 119 5-3-3不同放電電源對碳化鎢尺寸精度的影響 126 5-3-4碳化鎢3D微結構切割成型驗證 128 5-4不同放電電源對導電陶瓷放電加工的影響探討 131 5-4-1不同放電電源對導電陶瓷移除率的比較 131 5-4-2不同放電電源對導電陶瓷表面粗糙度的影響 138 5-4-3不同放電電源對導電陶瓷尺寸精度的影響 144 5-4-4導電陶瓷3D微結構切割成型驗證 146 5-5不同放電電源對含硼聚晶鑽石放電加工影響探討 149 5-5-1不同放電電源對含硼聚晶鑽石移除率的比較 149 5-5-2不同放電電源對含硼聚晶鑽石表面粗糙度的影響 156 5-5-3不同放電電源對含硼聚晶鑽石尺寸精度的影響 162 5-5-4含硼聚晶鑽石3D微結構切割成型驗證 164 第六章 結論與未來展望 167 6-1多重「電阻-電容」放電電源之火花腐蝕能力(SEA)探討 167 6-2多重「電阻-電容」放電電源切割效能(CP)探討 169 6-3不同放電電源對切割金屬的析出物(鈷)的影響 170 6-4研究成果與貢獻 174 6-4-1本研究成果 174 6-4-2本研究貢獻 175 6-5未來展望 176 參考文獻 177 附件一:多重「電阻-電容」放電電源脈波時序控制程式碼 183

    [1] Yole Développement, Status of the MEMS industry, Yole Développement, July 2012
    [2] https://www.mems-exchange.org/MEMS/fabrication.html
    [3] S.T. Chen, H.Y. Yang, C.W. Du, Study of an ultrafine w-EDM technique, Journal of Micromechanics and Microengineering, Vol.19, No.11, pp.115033-115040, 2009
    [4] http://www.eetasia.com/ART 8800416404_1034362_NT_a5fd45ee.HTM
    [5] L. Alting, F. Kimura, H.N. Hansen, G. Bissaccoa, Micro engineering, Annals of the CIRP, Vol.52, pp.635-637, 2003
    [6] 齋藤長男、賴耿陽譯,放電加工機活用,復漢出版社,pp 7-57,1981
    [7] 鳳誠三郎、蒼藤尚雄,放電加工,復漢出版社, pp5-12,1976
    [8] A.G. Mamalis, G.C. Vosniakos, N.M. Vaxevanidis, Macroscope and microscopic phenomena of electro-discharge machined steel surface: an experimental investigation, Journal of Mechanical Working Technology, Vol.15, pp.335-356, 1987
    [9] N.F. Petrofes, A.M. Gadalla, Processing aspects of shaping advanced materials by electrical discharge machining, Materials and Manufacturing Process, Vol.3, No.1, pp.127-157, 1988
    [10] R. Bormann, Understanding die-sinking EDM surface integrity, Carbide and Tool Journal, Vol.20, No.6, pp.12-16, 1988
    [11] J.P. Kruth, L. Stevens, L. Froyen, B. Lauwers, Study of the white layer of a surface machined by die-sinking electro-discharge machining, Annals of CIRP, Vol.44, No.1, pp.169-172, 1995
    [12] J.S. Soni, G. Chakraverti, Experimental investigation on migration of material during EDM of die steel, Journal of Materials Processing Technology, Vol.56, pp.439-451, 1996
    [13] J.C. Rebelo, A. Morao Dias, J.L. Lebrun, Influence of EDM pulse energy on the surface integrity of martensitic steels, Journal of Materials Processing Technology, Vol.84, pp. 90-96, 1998
    [14] Y.F. Tzeng, C.Y. Lee, Effects of powder characteristics on electrodischarge machining efficiency, International Journal of Advanced Manufacturing Technology, Vol.17, pp.586-592, 2001
    [15] Y.F. Tzeng, F.C. Chen, A simple approach for robust design of high-speed electrical-discharge machining technology, Machine Tools and Manufacture, vol.43, pp.217-227, 2003
    [16] Y.H. Guu, AFM surface imaging of AISI D2 tool steel machined by the EDM process, Applied Surface Science, Vol.242, pp.245-250, 2005
    [17] Y.Y. Hu, D. Zhu, N.S. Qu, B. Zeng, P.M. Ming, Fabrication of high-aspect-ratio electrode array by combining UV-LIGA with micro electro-discharge machining, Microsystem Technologies, Vol.15, Issue4, pp.519-525, 2008
    [18] S.C. Di, X.Y. Chu, D.B. Wei, Z.L. Wang, G.X. Chi, Y. Liu, Analysis of kerf width in micro-WEDM, International Journal of Machine Tools & Manufacture, Vol.49, pp.788-792, 2009
    [19] C. Mai, H.H. Cheng, S. Huang, Advantages of carbon nanotubes in electrical discharge machining, International Journal of Advanced Manufacturing Technology, Vol.59, pp.111-117, 2011
    [20] J. Wang, F.Z. Han, G. Cheng, F.L. Zhao, Debris and bubble movements during electrical discharge machining, International Journal of Machine Tools & Manufacture, Vol.58, pp.11–18, 2012
    [21] J. Goda, K. Mitsui, Development of an integrated apparatus of micro-EDM and micro-C MM, Measurement, Vol.46, pp.552–562, 2013
    [22] T. Magara, Power Source for Electric Discharge Machining, U.S. Patent US5149931A, 1992.
    [23] Sodick Co., Ltd., Method and apparatus for achieving a fine surface finish in wire-cut EDM, United States Patent, US6130395A, 2000
    [24] 林東漢,放電加工用之電源供應手段,中華民國發明專利,586980,2001
    [25] Charmilles Technologies Co. Ltd, Process and Device for Machining by Electroerosion, United States Patent, US6465754B1, 2002
    [26] Mitsubishi Co. Ltd, Power Supply System for Applying A Voltage of Both Positive and Negative Polarties in Electric Discharge Machining, United States Patent, , US6727455B1, 2004
    [27] 財團法人工業技術研究院,自調式放電加工節能電源裝置及其方法,中華民國發明專利,I413559,2011
    [28] 顏木田,放電加工之電源控制裝置,中華民國發明專利,I357840,2012
    [29] M.T. Yan, G.R. Fang and Y.T. Liu, An Experimental Study on Micro Wire-EDM of Polycrystalline Diamond Using a Novel Pulse Generator, The International Journal of Advanced Manufacturing Technology, Vol.66, No. 9-12, pp.1633-1640, 2013
    [30] Y. Sakai, A. Goto, K. Nakamura, K. Hattori, K. Kobayashi, Improvement of Machining Accuracy in Wire Electrical Discharge Machining, Proceedings of 15th International Symposium on Electromachining, pp.171-174, 2007
    [31] F. Han, S. Wachi, M. Kunieda, Improvement of Machining Characteristics of Micro-EDM using Transistor Type Isopulse Generator and Servo Feed Control, Precision Engineering, Vol.28, pp. 378-385, 2004
    [32] D.K. Chung, H.S. Shin, B.H. Kim, C.N. Chu, High frequency micro wire edm for electrolytic corrosion prevention, International Journal Of Precision Engineering And Manufacturing, Vol.12, No.62011, pp. 1125-1128, 2011
    [33] Y. Jiang, W. Zhao, X. Xi, A study on pulse control for small-hole electrical discharge machining, Journal of Materials Processing Technology, Vol.212, pp.1463– 1471, 2012
    [34] 郭佳儱,微放電加工技術於MEMS之應用,機械月刊,第25 卷,第11 期,pp.304-313,1999
    [35] 蕭瑞聖,微細零件之線切割放電加工,機械技術雜誌,第120期,pp.8-15,1995
    [36] T. Masuzawa, M. Fujino, K. Kobayashi, Wire Electro-Discharge Grinding for Micro-Machining, Annals of the CIRP, Vol.34, No.1, pp.431-434, 1985
    [37] K. Egashira, T. Masuzawa, Micro ultrasonic Machining by the Application of Work piece Vibration, Annals of the CIRP, Vol.48, No.1, pp.131-134, 1999
    [38] W. Ehrfeld, V. Hessel, H. Löwe, C. Schulz, L. Weber, Materials of LIGA technology, Microsystem Technologies, Vol. 5, Issue 3, pp.105-112 , 1999
    [39] P.E. Ciddor, K.H. Edensor, K.J. Loughry, H.M.P. Stock, A 70-metre laser interferometer for the calibration of survey tapes and EDM equipment, Australian Surveyor, Vol.33, Issue 6, pp.493-502, 1987
    [40] C. So mmer, Non-traditional machining handbook. Advance Publishing, Inc. 117-124, 2000
    [41] EDM製造產品, http://www.leechind.com/edm.html
    [42] T. Masuzawa, Micro-EDM, Proceedings of the 13th international symposium for electromachining, pp.3-19, 2001
    [43] T. Masuzawa, M. Fujino, Wire Electro Discharge Grinding for Micro Machining, CIRP, Vol.34, pp.431-434, 1985
    [44] S.T. Chen, H.Y. Yang, Study of micro-electro discharge machining (micro-EDM) with on-machine measurement-assisted techniques, Measurement Science & Technology, Vol.22, No.6, 2011
    [45] S.T. Chen, H.Y. Yang, Y.C. Lai, Z.X. Zhang, S.W. Fan, Fabrication and research of a micro electro-machining system, Proceedings of the Sixth National Conference on Precision Manufacturing SME Taipei Chapter, Tainan, Taiwan, pp.217-222, 2009
    [46] S.T. Chen, Z.H. Jiang, Y.Y. Wu, H.Y. Yang, Development of a reverse micro EDM-drilling for holing diamond-tool, Advanced Materials Research, Vol.126-12, pp802-8078, 2010
    [47] 林昀,冠昱,電子學,頂茂圖書出版股份有限公司,pp. 1-19-1-27,2002
    [48] 鄭振東編譯,新型柔性切換式電源技術入門,全華圖書有限公司,台北,pp.10-25,2003
    [49] M. Joshi, V. Agarwal, Design optimization of ZVS and ZCS quasi-resonant converters for EMI reduction, SEMCEI, pp.407-413, 1997
    [50] R. Prieto, J.A. Cobos, O. Garcia, P. Alou, J. Uceda, Taking into Account All the Parasitic Effects in the Design of Magnetic Components, APEC 98, vol.1 , pp. 400-406, 1998
    [51] K.M. Smith, K.M. Smedley, Lossless passive soft-switching methods for inverters and amplifiers, IEEE Transactions, Vol.15, Issue1, pp. 164-173, 2000
    [52] C. Iannello, S. Luo, I. Batarseh, Full Bridge ZCS PWM Converter for High-Voltage High-Power Applications, IEEE Trans. on AES, vol.38, pp. 515-526, 2002
    [53] 朱銘成,FPGA原理及應用設計,電子工業出版社,pp.4-15,1994
    [54] Altera DE0, terasIC, http://www.terasic.com.tw/cgi-bin/page/archive.pl
    ?Language=Taiwan&CategoryNo=54&No=371
    [55] FLOYD原著,陳鴻進、陳平和、廖炳松、白能勝、郭英哲編譯,Digital fundamentals with VHDL數位邏輯-使用VHDL,全華科技圖書股份有限公司,pp.50-68,2007
    [56] 黃瑋平,低成本高剛性微型工具機開發與高精度陣列光學微模具製作研究,國立臺灣師範大學機電科技學系碩士論文,2011
    [57] Aerotech, ALS10010, http://www.aerotech.com
    [58] 高速主軸, NSK:http://www.nsk-nakanishi.co.jp
    [59] 工具顯微鏡,漢磊股份有限公司,http://www.aixon.com.tw/
    [60] 掃描式電子顯微鏡,JEOL,http://www.jeol.com/Default.aspx?tabid=36
    [61] 3D測量雷射共焦顯微鏡,OLYMPUS,http://www.olympus-ims.com
    [62] 混合訊號示波器,Tektronix,http://www.tek.com
    [63] 黃銅電極(50µm),TECHNOS株式會社,http://www.bedra.com
    [64] 株式会社テクノス,http://technos-corp.co.jp/publics/index/20/
    [65] 連東股份有限公司,http://www.landon.com.tw
    [66] H.J. Scussel, Friction and wear of cemented carbides, ASM handbook, Vol.18, pp.795, 1992
    [67] Tungaloy Cutting Tools, www.tungaloy.com
    [68] S.T. Chen, C.H. Chang, Development of an ultrathin BD-PCD wheel-tool for in-situ microgroove generation on NAK80 mold steel, Journal of Materials Processing Technology, Vol.213, pp.740-751, 2013
    [69] K. Suzuki, Y. Shiraishi, N. Nakajima, M. Iwai, S. Ninomiya, Y. Tanaka, T. Uematsu, Development of new PCD made up of boron doped diamond particles and its machinability by EDM, Advanced Materials Research, Vol.76-78, pp.684-689, 2009
    [70] 楊士緯,高頻振動輔助微線切割放電加工技術開發與高密度超高細長比精微陣列探針製作研究,國立臺灣師範大學機電科技學系碩士論文,2013

    下載圖示
    QR CODE