研究生: |
楊濟源 Chi-Yuan Yang |
---|---|
論文名稱: |
氮化鎵奈米結構與鈦酸鍶/釕酸鍶異質結構之載子動力學 Carrier Dynamics in GaN Thin Film/Nanorods and SrTiO3/SrRuO3 Heterostructures |
指導教授: |
賈至達
Chia, Chih-Ta 林宮玄 Lin, Kung-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 41 |
中文關鍵詞: | 氮化鎵 、奈米柱 、鈦酸鍶 、釕酸鍶 、激發探測光譜 |
英文關鍵詞: | gallium nitride, nanorod, strontium titanate, strontium ruthenate, pump-probe spectroscopy |
論文種類: | 學術論文 |
相關次數: | 點閱:237 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用飛秒雷射建構時間解析光譜系統,分別研究兩種不同材料的載子超快現象。第一部分為分析氮化鎵(Gallium nitride)薄膜與奈米柱之差異。第二部分為氧化物鈦酸鍶(SrTiO3, STO)及釕酸鍶(SrRuO3, SRO)所組成之STO/SRO/STO(001)異質結構。氮化鎵奈米柱比起薄膜擁有許多優點,像是沒有晶格缺陷、提高發光效率以及與基板間沒有張力。氮化鎵薄膜的光致螢光光譜存在能隙(3.4 eV)以外的波長(3.36 eV及3.30 eV)但在奈米柱光譜中並沒有發現。我們發現利用此激發 探測光反射系統同樣檢驗出此頻帶;同時也發現相對薄膜,奈米柱結構限制的光激載子的擴散通道。
我們利用兩種不同架構激發 探測光反射系統研究STO/SRO異質結構,我們展示SRO在材料內部時同樣可以做為聲子產生器。根據STO中布里淵散射結果,我們準確的得到STO近紫外光附近的的折射率。在變溫實驗(80 K~300 K)中,我們發現STO與SRO相變溫度分別為105 K,160 K,在相變過程中,我們發現聲子的生命週期減短。
In this thesis, we study the carrier dynamics of (i) GaN nanorod/film, and (ii) strontium titanate (SrTiO3)/strontium ruthenate (SrRuO3) heterostructures by utilizing time-resolved pump-probe spectroscopy. In the first part, the photoluminescence spectrum of GaN thin film exhibits side peaks at 3.36 eV and 3.30 eV besides bandgap 3.40 eV, while the spectrum of GaN nanorods shows only one peak at 3.40 eV. These phenomena were also observed in wavelength-dependent pump probe traces, and the absorption peaks were resolved for GaN thin film and nanorods. The carrier diffusion and surface trapping effects have also been investigated. The second part, two different pump-probe spectroscopy setups were employed to study STO/SRO heterostructures. We demonstrate that SRO beneath STO thin film can be served as phonon transducer. According to the Brillouin scattering, the refractive index of STO around near UV region was accurately obtained. In the temperature-dependent experiment (80K~ 300 K), we discovered dramatic changes of time-resolved reflectivity during the phase transition of STO (105 K) and SRO (160 K), respectively. The lifetimes of phonon were also shorter during the phase transitions of both materials.
[1] K. Kawasaki, D. Yamazaki, A. Kinoshita, H. Hirayama, K. Tsutsui, and Y. Aoyagi, "GaN quantum-dot formation by self-assembling droplet epitaxy and application to single-electron transistors," Applied Physics Letters, vol. 79, pp. 2243-2245, 2001.
[2] Y. Arakawa, "Progress in GaN-based quantum dots for optoelectronics applications," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 8, pp. 823-832, 2002.
[3] H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, and S. Gwo, "InGaN/GaN nanorod array white light-emitting diode," Applied Physics Letters, vol. 97, p. 073101, 2010.
[4] Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, et al., "Plasmonic nanolaser using epitaxially grown silver film," Science, vol. 337, pp. 450-3, Jul 27 2012.
[5] P. K. Petrov, E. F. Carlsson, P. Larsson, M. Friesel, and Z. G. Ivanov, "Improved SrTiO3 multilayers for microwave application: Growth and properties," Journal of Applied Physics, vol. 84, pp. 3134-3140, 1998.
[6] S. R. S. Kumar, A. Z. Barasheed, and H. N. Alshareef, "High Temperature Thermoelectric Properties of Strontium Titanate Thin Films with Oxygen Vacancy and Niobium Doping," ACS Applied Materials & Interfaces, vol. 5, pp. 7268-7273, 2013/08/14 2013.
[7] C. S. Koonce, M. L. Cohen, J. F. Schooley, W. R. Hosler, and E. R. Pfeiffer, "Superconducting Transition Temperatures of Semiconducting SrTiO3," Physical Review, vol. 163, pp. 380-390, 11/10/ 1967.
[8] P. B. Allen, H. Berger, O. Chauvet, L. Forro, T. Jarlborg, A. Junod, et al., "Transport properties, thermodynamic properties, and electronic structure of SrRuO3," Physical Review B, vol. 53, pp. 4393-4398, 02/15/ 1996.
[9] G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S. Dodge, C.-B. Eom, et al., "Structure, physical properties, and applications of SrRuO3 thin films," Reviews of Modern Physics, vol. 84, pp. 253-298, 2012.
[10] J. F. Scott, "Soft-mode spectroscopy: Experimental studies of structural phase transitions," Reviews of Modern Physics, vol. 46, pp. 83-128, 01/01/ 1974.
[11] K. W. Blazey, "Optical Absorption Edge of SrTiO3 Around the 105-K Phase Transition," Physical Review Letters, vol. 27, pp. 146-148, 07/19/ 1971.
[12] G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-κ gate dielectrics: Current status and materials properties considerations," Journal of Applied Physics, vol. 89, p. 5243, 2001.
[13] C. E. Ekuma, M. Jarrell, J. Moreno, and D. Bagayoko, "First principle electronic, structural, elastic, and optical properties of strontium titanate," AIP Advances, vol. 2, pp. -, 2012.
[14] M. Herzog, D. Schick, W. Leitenberger, R. Shayduk, R. M. v. d. Veen, C. J. Milne, et al., "Tailoring interference and nonlinear manipulation of femtosecond x-rays," New Journal of Physics, vol. 14, p. 013004, 2012.
[15] Y. Zhong, K. S. Wong, W. Zhang, and D. C. Look, "Radiative recombination and ultralong exciton photoluminescence lifetime in GaN freestanding film via two-photon excitation," Applied Physics Letters, vol. 89, pp. -, 2006.
[16] 洪勝富、齊正中, "時間解析激發-探測技術," 物理雙月刊, vol. 二十卷五期, 中華民國八十七年十月.
[17] M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe: Wiley, 2001.
[18] M. A. Reshchikov and H. Morkoç, "Luminescence properties of defects in GaN," Journal of Applied Physics, vol. 97, p. 061301, 2005.
[19] C. Kittel, Introduction to Solid State Physics: Wiley, 2005.
[20] Y.-C. Wen, G.-W. Chern, K.-H. Lin, J. J. Yeh, and C.-K. Sun, "Femtosecond optical excitation of coherent acoustic phonons in a piezoelectric p-n junction," Physical Review B, vol. 84, p. 205315, 11/16/ 2011.
[21] M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, et al., Handbook of Optics, Third Edition Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set): Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set): McGraw-Hill Education, 2009.
[22] C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, "Surface generation and detection of phonons by picosecond light pulses," Physical Review B, vol. 34, pp. 4129-4138, 1986.
[23] R. Truell, C. Elbaum, B.B. Chick, "Ultrasonic Methods in Solid State Physics," 1969.
[24] T. Shih, M. T. Winkler, T. Voss, and E. Mazur, "Dielectric function dynamics during femtosecond laser excitation of bulk ZnO," Applied Physics A, vol. 96, pp. 363-367, 2009.
[25] M. Hase and M. Kitajima, "Interaction of coherent phonons with defects and elementary excitations," J Phys Condens Matter, vol. 22, p. 073201, Feb 24 2010.
[26] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, et al., "Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements," Applied Physics Letters, vol. 71, pp. 2572-2574, 1997.
[27] B. S. Simpkins, M. A. Mastro, C. R. Eddy, and P. E. Pehrsson, "Surface depletion effects in semiconducting nanowires," Journal of Applied Physics, vol. 103, pp. -, 2008.
[28] W. S. Su, T. T. Chen, C. L. Cheng, S. P. Fu, Y. F. Chen, C. L. Hsiao, et al., "Built-in surface electric field, piezoelectricity and photoelastic effect in GaN nanorods for nanophotonic devices," Nanotechnology, vol. 19, p. 235401, 2008.
[29] H.-P. Chen, Y.-C. Wu, P. A. Mante, S.-J. Tu, J.-K. Sheu, and C.-K. Sun, "Femtosecond excitation of radial breathing mode in 2-D arrayed GaN nanorods," Optics Express, vol. 20, pp. 16611-16617, 2012/07/16 2012.
[30] P.-A. Mante, C.-Y. Ho, L.-W. Tu, and C.-K. Sun, "Interferometric detection of extensional modes of GaN nanorods array," Optics Express, vol. 20, pp. 18717-18722, 2012/08/13 2012.
[31] A. Devos, Y.-C. Wen, P.-A. Mante, and C.-K. Sun, "Comment on “Observation of anomalous acoustic phonon dispersion in SrTiO3 by broadband stimulated Brillouin scattering” [Appl. Phys. Lett. 98, 211907 (2011)]," Applied Physics Letters, vol. 100, pp. -, 2012.
[32] E. D. Palik, "Handbook of Optical Constants of Solids," 1985.
[33] R. Bell and G. Rupprecht, "Elastic Constants of Strontium Titanate," Physical Review, vol. 129, pp. 90-94, 1963.
[34] T. Kohmoto, K. Tada, T. Moriyasu, and Y. Fukuda, "Observation of coherent phonons in strontium titanate: Structural phase transition and ultrafast dynamics of the soft modes," Physical Review B, vol. 74, 2006.
[35] S. Brivio, D. Polli, A. Crespi, R. Osellame, G. Cerullo, and R. Bertacco, "Observation of anomalous acoustic phonon dispersion in SrTiO3 by broadband stimulated Brillouin scattering," Applied Physics Letters, vol. 98, p. 211907, 2011.
[36] T. Kiyama, K. Yoshimura, K. Kosuge, Y. Ikeda, and Y. Bando, "Invar effect of SrRuO3 Itinerant electron magnetism of Ru4d electrons," Physical Review B, vol. 54, pp. R756-R759, 07/01/ 1996.
[37] M. Cardona, "Optical Properties and Band Structure of SrTiO3 and BaTiO3," Physical Review, vol. 140, pp. A651-A655, 1965.
[38] D. Bäuerle, W. Braun, V. Saile, G. Sprüssel, and E. E. Koch, "Vacuum ultraviolet reflectivity and band structure of SrTiO3 and BaTiO3," Zeitschrift für Physik B Condensed Matter, vol. 29, pp. 179-184, 1978/09/01 1978.
[39] C. K. Sun, F. Vallée, L. Acioli, E. P. Ippen, and J. G. Fujimoto, "Femtosecond investigation of electron thermalization in gold," Physical Review B, vol. 48, pp. 12365-12368, 10/15/ 1993.