簡易檢索 / 詳目顯示

研究生: 高宏達
論文名稱: 一個基於一般性Fischer-Burmeister函數的NCP函數
On an NCP-function Based on the Generalized Fischer-Burmeister Function
指導教授: 陳界山
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 22
中文關鍵詞: NCP函數
論文種類: 學術論文
相關次數: 點閱:219下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去二十年中,數學家發展了很多的方法來處理非線性互補問題。其中最有名的是轉換成解一個非線性方程組或是最小值問題。在這篇論文中,我們研究一個新函數。特別的是,我們列出這個函數有全面誤差估計的條件和有有界階段集的條件。

    Abstract: P.1 1. Introduction: P.1 2. Preliminaries: P.4 3. A New Merit Function and Its Properties: P.7 4. Appendix: P.18 5. Concluding Remarks: P.19 References: P.19

    [1] B. Chen, X. Chen, and C. Kanzow, A Penalized Fischer-Burmeister NCP-
    function: Theoretical Investigation and Numerical Results, Mathematical Program-
    ming, vol. 88, pp. 211-216, 2000.

    [2] J.-S. Chen, The Semismooth-related Properties of a Merit function and a Descent
    Method for the Nonlinear Complementarity Problem, Journal of Global Optimization,
    vol. 24, pp. 565-580, 2006.

    [3] J.-S. Chen, On Some NCP-functions Based on the Generalized Fischer-Burmeister
    function, Asia-Paci¯c Journal of Opertional Research, vol. 24, pp. 401-420, 2007.

    [4] J.-S. Chen and S. Pan, A Family of NCP-functions and a Descent Method for
    the Nonlinear Complementarity Problem, to appear in Computational Optimization
    and Applications, 2008.

    [5] J.-S. Chen and S. Pan, A Family of Penalized NCP-functions Based on the Gen-
    eralized Fischer-Burmeister Functions: Theoretical Investigation and Numerical Re-
    sults, submitted manuscript, 2007.

    [6] R.W. Cottle, J.-S. Pang and R.-E. Stone, The Linear Complementarity Prob-
    lem, Academic Press, New York, 1992.

    [7] S. Dafermos, An Iterative Scheme for Variational Inequalities, Mathematical Pro-
    gramming, vol. 26, pp.40-47, 1983.

    [8] F. Facchinei and J. Soares, A New Merit Function for Nonlinear Complemen-
    tarity Problems and a Related Algorithm, SIAM Journal on Optimization, vol. 7, pp.
    225-247, 1997.

    [9] A. Fischer, A Special Newton-type Optimization Method, Optimization, vol. 24,
    pp. 269-284, 1992.

    [10] M. Fukushima Merit Functions for Varitional Inequality and Complementarity
    Problem, Nonlinear Optimization and Applications, edited by G Di Pillo and F.
    Giannessi, Pleneum Press, New York, pp. 155-170, 1996.

    [11] C. Geiger and C. Kanzow, On the Resolution of Monotone Complementarity
    Problems, Computational Optimization and Applications, vol. 5, pp. 155-173, 1996.

    [12] P. T. Harker and J.-S. Pang, Finite Dimensional Variational Inequality and
    Nonlinear Complementarity Problem: A Survey of Theory, Algorithms and Applica-
    tions, Mathematical Programming, vol. 48, pp. 161-220, 1990.

    [13] H. Jiang, Unconstrained Minimization Approaches to Nonlinear Complementarity
    Problems, Journal of Global Optimization, vol. 9, pp. 169-181, 1996.

    [14] C. Kanzow, Nonlinear Complementarity as Unconstrained Optimization, Journal
    of Optimization Theory and Applications, vol. 88, pp. 139-155, 1996.

    [15] C. Kanzow and N. Yamashita and M. Fukushima, New NCP-functions and
    Their Properties, Journal of Optimization Theory and Applications, vol. 94, pp.
    115-135, 1997.

    [16] O. L. Mangasarian, Equivalence of the Complementarity Problem to a System
    of Nonlinear Equations, SIAM Journal on Applied Mathematics, vol. 31, pp. 89-92,
    1976.

    [17] J.-S. Pang, A Posteriori Error Bounds for the Linearly-constrained Variational
    Inequality Problem, Mathematics of Operations Research, vol. 12, pp. 474-484, 1987.

    [18] J.-S. Pang, Complementarity problems, Handbook of Global Optimization, edited
    by R. Horst and P. Pardalos, Kluwer Academic Publishers, Boston, Massachusetts,
    pp. 271-338, 1994.

    [19] J.-S. Pang, Newton's Method for B-di®erentiable Equations, Mathematics of Op-
    erations Research, vol. 15, pp. 311-341, 1990.

    [20] J.-S. Pang and D. Chan, Iterative Methods for Variational and Complemantarity
    Problems, Mathematics Programming, vol. 27, 99. 284-313, 1982.

    [21] P. Tseng, Growth Behavior of a Class of Merit Functions for the Nonlinear Com-
    plementarity Problem, Journal of Optimization Theory and Applications, vol. 89, pp.
    17-37, 1996.

    [22] N. Yamashita and M. Fukushima, On Stationary Points of the Implicit La-
    grangian for the Nonlinear Complementarity Problems, Journal of Optimization The-
    ory and Applications, vol. 84, pp. 653-663, 1995.

    [23] N. Yamashita and M. Fukushima, Modi¯ed Newton Methods for Solving a
    Semismooth Reformulation of Monotone Complementarity Problems, Mathematical
    Programming, vol. 76, pp. 469-491, 1997.

    [24] K. Yamada, N. Yamashita, and M. Fukushima, A New Derivative-free De-
    scent Method for the Nonlinear Complementarity Problems, in Nonlinear Optimiza-
    tion and Related Topics edited by G.D. Pillo and F. Giannessi, Kluwer Academic
    Publishers, Netherlands, pp. 463-487, 2000.

    下載圖示
    QR CODE