研究生: |
黃松勳 Huang, Song-Hsun |
---|---|
論文名稱: |
陰離子空缺對於層狀多晶與單晶1T-TiSe2-d的能帶與侷域結構之影響 The impact of anion vacancy defects on band picture and local structure of layered polycrystalline and single crystal 1T-TiSe2-d |
指導教授: |
劉祥麟
Liu, Hsiang-Lin 周方正 Chou, Fang-Cheng |
學位類別: |
博士 Doctor |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 89 |
中文關鍵詞: | Transition metal dichalcogenides (TMDCs) 、Charge density waves (CDW) 、Excitonic insulator 、Semiconductor |
英文關鍵詞: | Transition metal dichalcogenides (TMDCs), Charge density waves (CDW), Excitonic insulator, Semiconductor |
DOI URL: | https://doi.org/10.6345/NTNU202201994 |
論文種類: | 學術論文 |
相關次數: | 點閱:95 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無中文摘要
A systematic study of 1T-TiSe2 polycrystalline and single crystalline with controlled Se deficiency level indicates that a significant Se loss could be responsible for the controversial charge density wave (CDW) phase and on whether the nominal 1T-TiSe2 should be categorized as a semiconductor or a semimetal at room temperature. In the polycrystalline form, the second order CDW phase transition near ~200 K is found to be most pronounced in samples with δ ~0.12, corresponding to about one Se atom missing per eight formula units in average, which is incommensurate to the hexagonal symmetry and naturally leads to the charge ordering of 2a × 2a × 2c superlattice via exciton-phonon coupling. The anomalous resistivity ρ(T) peak between 100 and 200 K indicates not only resistivity increase due to charge ordering, but also a concomitant p- to n- carrier type change. An interpretation using band model for an extrinsic p-type semiconductor with an impurity band (IB) in proximity to the valence band (VB) is proposed to explain the evolution of Se vacancy level and electronic structure change for 1T-TiSe2-δ, from the low doping bound (δ ~0.08) of semiconducting behavior to the heavily doped (δ ~0.17) dirty semiconductor showing metallic-like n-type conduction. Supporting experimental evidences for the Se vacancy existence are provided by the integrated chemical and physical property analyses, including electron probe microanalysis (EPMA), Hall coefficient, and magnetic susceptibility. In single crystal form, the Se vacancy and Ti-intercalation are dominant near the crystal surface as explored by the scanning tunneling microscopy (STM). The Se vacancy level is found reduced on the crystal surface after prolonged annealing at high temperature, but the intercalated Ti level grows, which implies the occurrence of local re-structuring near the Se vacancy sites. Room temperature Raman scattering spectrum shows a red shift of A1g phonon mode and a blue shift of Eg phonon mode after the long time high temperature post-annealing. The high temperature post-annealing procedure has different impact on polycrystalline and single crystal samples, while samples of small grain size (~10-30 μm) have dominant Se deficiency in equilibrium, samples of large grain size (≳ 1 mm) shows significant amount of Ti-intercalation. This is most likely due to the different level of local re-structuring near the Se vacancy sites.
Keywords: Transition metal dichalcogenides (TMDCs), Charge density wave (CDW), Excitonic insulator, Semiconductor.
References
[1] J. A. Wilson and A.D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties”, Advances in Physics 18, 193 (1969).
[2] F. J. Di Salvo, D. E. Moncton, and J. V. Waszczak, “Electronic properties and superlattice formation in the semimetal TiSe2”, Phys. Rev. B 14, 4321 (1976).
[3] J. A. Wilson and S. Mahajan, “The anamalous behaviour of TiSe2 and the excitonic insulator mechanism”, Commun. Physics 2, 23 (1977).
[4] K. C. Woo, F. C. Brown, W. L. McMillan, R. J. Miller, M. J. Schaffman, and M. P. Sears, “Superlattice formation in titanium diselenide”, Phys. Rev. B 14, 3242 (1976).
[5] J. A. Wilson, “Modeling the contasting semimetallic characters of TiS2 and TiSe2”, Phys. Status Solidi B 86, 11 (1978).
[6] O. Anderson, G. Karschnick, R. Manzke, and M. Skibowski, “The phase transition in the electronic structure of 1T-TiSe2”, Solid State Commun. 53, 339 (1985).
[7] Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Origin of the charge density wave in 1T-TiSe2”, Phys. Rev. B 85, 245133 (2012).
[8] J. van Wezel, P. Nahai-Williamson, and S. S. Saxena, “Exciton-phonon-driven charge density wave in TiSe2”, Phys. Rev. B 81, 165109 (2010).
[9] C. Monney, C. Battaglia, H. Cercellier, P. Aebi, and H. Beck, “Exciton condensation driving the periodic lattice distortion of 1T-TiSe2”, Phys. Rev. Lett. 106, 106404 (2011).
[10] H. P. Hughes, “Structural distortion in TiSe2 and related materials-a possible Jahn-Teller effect?”, J. Phys. C: Solid State Phys. 10, L319 (1977).
[11] K. Rossnagel, L. Kipp, and M. Skibowski, “Charge-density-wave phase transition in 1T-TiSe2: Excitonic insulator versus band-type Jahn-Teller mechanism”, Phys. Rev. B 65, 235101 (2002¬).
[12] M. H. Whangbo and E. Canadell, “Analogies between the concepts of molecular chemistry and solid-state physics concerning structural instabilities. Electronic origin of the structural modulations in layered transition-metal dichalcogenides”, J. Am. Chem. Soc. 114, 9587 (1992).
[13] T. E. Kidd, T. Miller, M.Y. Chou, and T. C. Chiang, “Electron-hole coupling and the charge density wave transition in TiSe2”, Phys. Rev. Lett. 88, 226402 (2002).
[14] D. Jérome, T. M. Rice, and W. Kohn, “Excitonic insulator”, Phys. Rev. 158, 462 (1967).
[15] H. Cercellier, C. Monney, F. Clerc, C. Battaglia, L. Despont, M. G. Garnier, H. Beck, and P. Aebi, “Evidence for an excitonic insulator phase in 1T-TiSe2”, Phys. Rev. Lett. 99, 146403 (2007).
[16] C. Monney, H. Cercellier, F. Clerc, C. Battaglia, E. F. Schwier, C. Didiot, M. G. Garnier, H. Beck, P. Aebi, H. Berger, L. Forró , and L. Patthey, “Spontaneous exciton condensation in 1T-TiSe2: BCS-like approach”, Phys. Rev. B 79, 045116 (2009).
[17] D. L. Greenaway and R. Nitsche, “Preparation and optical properties of group IV-VI chalcogenides having the CdI2 structure”, J. Phys. Chem. Solids 26, 1445 (1965).
[18] Julia C. E. Rasch, Torsten Stemmler, Beate Müller, Lenart Dudy, and Recardo Manzke, “1T-TiSe2: Semimetal or semiconductor?”, Phys. Rev. Lett. 101, 237602 (2008).
[19] Matthias M. May, Christine Brabetz, Christoph Janowitz, and Recardo Manzke, “Charge-Density-Wave phase of 1T-TiSe2: The influence of conduction band population”, Phys. Rev. Lett. 107, 176405 (2011).
[20] Matthias M. May, Christine Brabetz, Christoph Janowitz, Recardo Manzke, “The influence of different growth conditions on the charge density wave transition of 1T-TiSe2”, Journal of Electron Spectroscopy and Related Phenomena 184, 180 (2011).
[21] Matthias M. May, Christoph Janowitz, and R. Manzke, “Realignment of the charge-density wave in TiSe2 by variation of the conduction band population”, arXiv: 1208.4761v3 [cond-mat.str-el], submitted to Phys. Rev. Lett. (2016).
[22] F. J. Di Salvo and J. V. Waszczak, “Transport properties anti the phase transition in Ti1-xMxSe2 (M = Ta or V)”, Phys. Rev. B 17, 3801 (1978).
[23] A. Zunger and A. J. Freeman, “Band structure and lattice instability of TiSe2”, Phys. Rev. B 17, 1839 (1978).
[24] O. Anderson, R. Manzke, and M. Skibowski, “Three-dimensional and relativistic effects in layered 1 T-TiSe2”, Phys. Rev. Lett. 55, 2188 (1985).
[25] T. Pillo, J. Hayoz, H. Berger, F. Levy, L. Schlapbach, and P. Aebi, “Photoemission of bands above the Fermi level: The excitonic insulator phase transition in 1T-TiSe2”, Phys. Rev. B 61, 16213 (2000).
[26] G. Li, W. Z. Hu, D. Qian, D. Hsieh, M. Z. Hasan, E. Morosan, R. J. Cava, and N. L. Wang, “Semimetal-to-semimetal charge density wave transition in 1T-TiSe2”, Phys. Rev. Lett. 99, 027404 (2007).
[27] J. Ishioka, Y. H. Liu, K. Shimatake, T. Kurosawa, K. Ichimura, Y. Toda, M. Oda, and S. Tanda, “Chiral charge-density waves”, Phys. Rev. Lett. 105, 176401 (2010).
[28] E. Morosan, H. W. Zandbergen, B. S. Dennis, J. W. G. Bos, Y. Onose, T. Klimczuk, A. P. Ramirez, N. P. Ong, and R. J. Cava, “Superconductivity in CuxTiSe2”, Nature Phys. 2, 544 (2006).
[29] E. Morosan, K. E. Wagner, Liang L. Zhao, Y. Hor, A. J. Williams, J. Tao, Y. Zhu, and R. J. Cava, “Multiple electronic transitions and superconductivity in PdxTiSe2”, Phys. Rev. B 81, 094524 (2010).
[30] A. F. Kusmartseva, B. Sipos, H. Berger, L. Forró, and E. Tutiš, “Pressure induced superconductivity in pristine 1T-TiSe2”, Phys. Rev. Lett. 103, 236401 (2009).
[31] Y. I. Joe, X. M. Chen, P. Ghaemi, K. D. Finkelstein, G. A. de la Peña, Y. Gan, J. C. T. Lee, S. Yuan, J. Geck, G. J. MacDougall, T. C. Chiang, S. L. Cooper, E. Fradkin and P. Abbamonte, “Emergence of charge density wave domain walls above the superconducting dome in 1T-TiSe2”, Nature Phys. 10, 421 (2014).
[32] I. Taguchi, M. Asai, Y. Watanabe, and M. Oka, “Transport properties of iodine-free TiSe2”, Physica B+C 105, 146 (1981).
[33] F. Levy, “Electrical resistivity and Hall effect in TiSe2 containing vanadium impurities”, J. Phys. C: Solid State Phys. 12, 3725 (1979).
[34] N. Ogasawara, K. Nakamura and S. Tanaka, “The pressure effect on the CDW-transition and the transport properties of TiSe2”, Solid State Communication 31, 873 (1979).
[35] H. P. B. Rimmington, A. A. Balchin, and B. K. Tanner, “Nearly perfect single crystals of layer compounds grown by iodine vapour-transport techniques”, Journal of Crystal Growth 15, 51 (1972).
[36] R. A. Craven, F. J. Di Salvo and F. S. L. Hsu, “Mechanisms for the 200 K transition in TiSe2: A measurement of the specific heat”, Solid State Communications 25, 39 (1978).
[37] M. Wiesenmayer, S. Hilgenfeldt, S. Mathias, F. Steeb, T. Rohwer, and M. Bauer, “Spectroscopy and population decay of a van der Waals gap state in layered TiSe2”, Phys. Rev. B 82, 035422 (2010).
[38] R. Peierls, “Zur Theorie der elektirschen und thermischen Leitf¨ahigkeit von Metallen”, Annalen der Physik, 4 (2), 121 (1930).
[39] C. Monney’s thesis, “Exciton condensation in 1T-TiSe2: A photoemission study and its theoretical model” (2009).
[40] http://www.pi1.uni-stuttgart.de/forschung/organic/ladungsdichtewellen.en.html
[41] J. A. Wilson, F. J. Di Salvo, and J. Mahajan, “Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides”, Adv. Phys. 24, 117 (1975).
[42] Y. Aiura, H. Bando, R. Kitagawa, S. Maruyama, Y. Nishihara, K. Horiba, M. Oshima, O. Shiino, and M. Nakatake, “Electronic structure of layered 1T−TaSe2 in commensurate charge-density-wave phase studied by angle-resolved photoemission spectroscopy”, Phys. Rev. B 68, 073408 (2003).
[43] P. Fazekas and E. Tosatti, “Charge carrier localization in pure and doped 1T-TaS2”, Physica B+C 99, 183 (1980).
[44] F. Clerc, M. Bovet, H. Berger, L. Despont, C. Koitzsch, M. G. Garnier, and P. Aebi, “Charge density waves in 1T-TaS2: an angle-resolved photoemission study”, Physica B 351, 245 (2004).
[45] F. Clerc, C. Battaglia, M. Bovet, L. Despont, C. Monney, H. Cercellier, M. G. Garnier, and P. Aebi, “Lattice-distortion-enhanced electron-phonon coupling and Fermi surface nesting in 1T-TaS2”, Phys. Rev. B 74, 155114 (2006).
[46] B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tuti, “From Mott state to superconductivity in 1T-TaS2”, Nature Materials 7, 960 (2008).
[47] S. V. Borisenko, A. A. Kordyuk, A. N. Yaresko, V. B. Zabolotnyy, D. S. Inosov, R. Schuster, B. Büchner, R. Weber, R. Follath, L. Patthey, and H. Berger, “Pseudogap and charge density waves in two dimensions”, Phys. Rev. Lett. 100, 196402 (2008).
[48] M. H. van Maaren and H. B. Harland, “An energy band model of Nb- and Ta- dichalcogenides superconductors”, Phys. Lett. 29A, 571 (1969).
[49] S. Nagata, T. Aochi, T. Abe, S. Ebisu, T. Hagino, Y. Seki, and K. Tsutsumi, “Superconductivity in the layered compound 2H-TaS2”, J. Phys. Chem. Solids 53, 1259 (1992).
[50] K. E. Wagner, E. Morosan, Y. S. Hor, J. Tao, Y. Zhu, T. Sanders, T. M. McQueen, H. W. Zandbergen, A. J. Williams, D. V. West, and R. J. Cava, “Tuning the charge density wave and superconductivity in CuxTaS2”, Phys. Rev. B 78, 104520 (2008).
[51] Y. Hamaue and R. Aoki, “Effects of organic intercalation on lattice vibrations and superconducting properties of 2H–NbS2”, J. Phys. Soc. Jpn. 55, 1327 (1986).
[52] M. H. van Maaren and G. M. Schaeffer, “Superconductivity in group Va dichalcogenides”, Phys. Lett. 20, 131 (1966).
[53] D. E. Moncton, J. D. Axe, and F. J. DiSalvo, “Neutron scattering study of the charge-density wave transitions in 2H−TaSe2 and 2H−NbSe2”, Phys. Rev. B 16, 801 (1977).
[54] M. Holt, P. Zschack, Hawoong Hong, M. Y. Chou, and T.-C. Chiang, “X-ray studies of phonon softening in TiSe2”, Phys. Rev. Lett. 86, 3799 (2001).
[55] A. N. Titov and A. V. Dolgoshein. “Phase diagrams of intercalation materials with polaron-type carrier localization”, Phys. Solid State 42, 434 (2000).
[56] N. V. Baranov, K. Inoue, V. I. Maksimov, A. S. Ovchinnikov, V. G. Pleschov, A. Podlesnyak, A. N. Titov, and N. V. Toporova, “Ni intercalation of titanium diselenide: effect on the lattice, specific heat and magnetic properties”, J. Phys. Condens. Matter 16, 9243 (2004).
[57] X. Y. Cui, H. Negishi, S. G. Titova, K. Shimada, A. Ohnishi, M. Higashiguchi, Y. Miura, S. Hino, A. M. Jahir, A. Titov, H. Bidadi, S. Negishi, H. Namatame, M. Taniguchi, and M. Sasaki, “Direct evidence of band modification and suppression of superstructure in TiSe2 upon Fe intercalation: An angle-resolved photoemission study.”, Phys. Rev. B 73, 085111 (2006).
[58] N. V. Baranov, V. I. Maksimov, J. Mesot, V. G. Pleschov, A. Podlesnyak, V. Pomjakushin, and N. V. Selezneva, “Possible reappearance of the charge density wave transition in MxTiSe2 compounds intercalated with 3d metals”, J. Phys.: Condens. Matter 19, 016005 (2007).
[59] N. V. Baranov, A. N. Titov, V. I. Maksimov, N. V. Toporova, A. Daoud-Aladine, and A. Podlesnyak, “Antiferromagnetism in the ordered subsystem of Cr ions intercalated into titanium diselenide”, J. Phys.: Condens. Matter 17 (34), 5255 (2005).
[60] V. G. Pleshchev, N. V. Selezneva, V. I. Maksimov, A. V. Korolev, A. V. Podlesnyak, and N. V. Baranov, “Specific features of the structure, magnetic properties, and heat capacity of intercalated compounds CrxTiSe2”, Phys. Solid State 51 (5) , 933 (2009).
[61] V. G. Pleshchev, A. N. Titov, and A. V. Kuranov, “Electrical and magnetic properties of titanium diselenide intercalated with cobalt”, Phys. Solid State 39 (9), 1442 (1997).
[62] S. E. Stoltz, H. I. Starnberg, and L. J. Holleboom, “Rb deposition on TiSe2 and TiTe2 at 100 K and at room temperature studied by photoelectron spectroscopy”, Phys. Rev. B 71, 125403 (2005).
[63] M. M. Traum, G. Margaritondo, N. V. Smith, J. E. Rowe, and F. J. Di Salvo, “TiSe2: semiconductor, semimetal, or excitonic insulator”, Phys. Rev. B 17, 1836 (1978).
[64] N. G. Stoffel, S. D. Kevan, and N. V. Smith, “Experimental band structure of 1T-TiSe2 in the normal and charge-density-wave phases”, Phys. Rev. B 31, 8049 (1985).
[65] G. A. Benesch, A. M. Woolley, and C. Umrigar, “The pressure dependences of TiS2 and TiSe2 band structures”, J. Phys. C 18, 1595 (1985).
[66] C. M. Fang, R. A. de Groot, and C. Haas, “Bulk and surface electronic structure of 1T−TiS2 and 1T−TiSe2”, Phys. Rev. B 56, 4455 (1997).
[67] W. Kohn, “Excitonic phases”, Phys. Rev. Lett. 19, 439 (1967).
[68] B. I. Halperin and T. M. Rice, “Possible anomalies at a semimetal-semiconductor transistion”, Rev. Mod. Phys. 40, 755 (1968).
[69] http://www.nsrrc.org.tw/rdss/rdshow_1.html
[70] https://www.nsrrc.org.tw/english/lightsource.aspx
[71] A. C. Larson and R. B. Von Dreele, “Generalized structure analysis system”, Los Alamos National Laboratory, Los Alamos, NM, 1994.
[72] https:// www.ncnr.nist.gov/programs/crystallography/software/downloads.html
[73] B. H. Toby, “EXPGUI, a graphical user interface for GSAS”, J. Appl. Cryst. 34, 210-213 (2001).
[74] http://www.ruhr-uni-bochum.de/epma/methode/index.html.en
[75] http://www.sardarsinghsir.com/MSc/MSc%20-pdf%20files/Four-Probe-ethod.pdf
[76] http://courses.washington.edu/phys431/hall_effect/hall_effect.pdf
[77] G. Binning and H. Rohrer, “Scanning tunneling microscopy”, Helvetica Physica Acta 55, 726 (1982).
[78] S. Woedtke, Ph.D. thesis, Inst. f. Exp. u. Ang. Phys. der CAU Kiel, (2002).
[79] http://www.ieap.uni-kiel.de/surface/ag-kipp/stm/stm.htm
[80] K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, “Surface science: An introduction”, Springer, 452 (2010).
[81] http://eng.thesaurus.rusnano.com/wiki/article14154
[82] C. V. Raman, “A new radiation”, Ind. J. Phys. 2, 387 (1928).
[83] A. Smekal, “Zur Quantentheorie der Dispersion”, Naturwiss. 11, 873 (1923).
[84] J. R. Ferraro, K. Nakamoto, and C. W. Brown, “Introductory raman spectroscopy”, Elsveier, (2003).
[85] D. A. Long, “Raman spectroscopy”, McGraw-Hill, (1977).
[86] F. A. Kroger and H. J. Vink, “Relations between the concentrations of imperfections in solids”, J. Phys. Chem. Solids 5, 208 (1958).
[87] L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, “The intrinsic thermal conductivity of SnSe”, Nature 539, 7627 (2016).
[88] F.-T. Huang, M.-W. Chu, H. H. Kung, W. L. Lee, R. Sankar, S.-C. Liou, K. K. Wu, Y. K. Kuo, and F. C. Chou, “Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3”, Phys. Rev. B 86, 081104(R) (2012).
[89] B. Hildebrand, C. Didiot, A. M. Novello, G. Monney, A. Scarfato, A. Ubaldini, H. Berger, D. R. Bowler, C. Renner, and P. Aebi, “Doping nature of native defects in 1T-TiSe2”, Phys. Rev. Lett. 112, 197001 (2014).
[90] M. V. Kuznetsov, I. I. Ogorodnikov, A. S. Vorokh, A. S. Rasinkin, and A. N. Titov, “Characterization of 1T-TiSe¬2 surface by means of STM and XPD experiments and model calculations”, Surf. Sci. 606, 1760 (2012).
[91] B. Hildebrand, T. Jaouen, C. Didiot, E. Razzoli, G. Monney, M.-L. Mottas, A. Ubaldini, H. Berger, C. Barreteau, H. Beck, D. R. Bowler, and P. Aebi, “Short-range phase coherence and origin of the 1T-TiSe2 charge density wave”, Phys. Rev. B 93, 125140 (2016).
[92] W. Zhong, G. Overney, and D. Tomanek, “Structural properties of Fe crystals”, Phys. Rev. B 48, 6740 (1993).
[93] R. Z. Bachrach and M. Skibowski, “Angle-eesolved photoemission from TiSe2 using synchrotron radiation”, Phys. Rev. Lett. 37, 40 (1976).
[94] C. Kittel, “Introduction to solid state physics”, Wiley, New York, (1996).
[95] J. Von Boehm and H. M. Isomaki, “Relativistic p-d gaps of 1T-TiSe2, TiS2, ZrSe2 and ZrS2”, J. Phys. C 15, L733 (1982).
[96] H. Isomaki and J. Von Boehm, “The gaps of the ideal TiS2 and TiSe2”, J. Phys. C 14, L75 (1981).
[97] F. A. Kroger and H. J. Vink, “Relations between the concentrations of Imperfections in crystalline solids”, Solid State Phys. 3, 307 (1956).
[98] X. Blase, E. Bustarret, C. Chapelier, T. Klein, and C. Marcenat, “Superconducting group-IV semiconductors”, Nat. Mater. 8, 375 (2009).
[99] P. Chen, Y.-H. Chan, X.-Y. Fang, Y. Zhang, M. Y. Chou, S.-K. Mo, Z. Hussain, A.-V. Fedorov, and T.-C. Chiang, “Charge density wave transition in single-layer titanium diselenide”, Nat. Commun. 6, 8943 (2015).
[100] J. A. Wilson, “Concerning the semimetallic characters of TiS2 and TiSe2”, Solid State Commun. 22, 551 (1977).
[101] J. van Wezel, P. Nahai-Williamson, and S. S. Saxena, An alternative interpretation of recent ARPES measurements on TiSe2”, Europhys. Lett. 89, 47004 (2010).
[102] J. van Wezel, P. Nahai-Williamson, and S. S. Saxena, “Quasi one-dimensional chains and exciton–phonon interactions in TiSe2”, Phys. Status Solidi B 247, 592 (2010).
[103] David B. Lioi, David J. Gosztola, Gary P. Wiederrecht, and Goran Karapetrov, “Photon-induced selenium migration in TiSe2”, Appl. Phys. Lett. 110, 081901 (2017).
[104] A. H. Thompson, F. R. Gamble and C. R. Symon, “The verification of the existence of TiS2”, Mat. Res. Bull. 10, 915 (1975).
[105] P. M. Koenraad and M. E. Flatté, “Single dopants in semiconductors”, Nat. Mater. 10, 91 (2011).
[106] S. H. Huang, G. J. Shu, Woei Wu Pai, H. L. Liu, and F. C. Chou, “Tunable Se vacancy defects and the unconventional charge density wave in 1T−TiSe2−δ”, Phys. Rev. B 95, 045310 (2017).
[107] G. Lucovsky, R. M. White, J. A. Benda, and J. F. Revelli, “Infrared-reflectance spectra of layered group-IV and group-VI transition-metal dichalcogenides”, Phys. Rev. B 7, 3859 (1973).
[108] J. A. Holy, K. C. Woo, M. V. Klein, and F. C. Brown, “Raman and infrared studies of superlattice formation in TiSe2”, Phys. Rev. B 16, 3628 (1977).
[109] J. Wang, H. Zheng, G. Xu, L. Sun, D. Hu, Z. Lu, L. Liu, J. Zheng, C. Tao, and L. Jiao, “Controlled synthesis of two-dimensional 1T-TiSe2 with charge density wave transition by chemical vapor transport”, J. Am. Chem. Soc. 138, 16216 (2016).