簡易檢索 / 詳目顯示

研究生: 林宏鎧
Hong-Kai Lin
論文名稱: 結合臉部熱影像與雷射人體掃描特徵之身分辨識系統
An Identity Recognition System using Integration Face Thermal Image and Human Laser Scanned Features
指導教授: 曾煥雯
Tzeng, Huan-Wen
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 108
中文關鍵詞: 身分辨識熱影像溫層分割雷射距離影像人體特徵
英文關鍵詞: identity recognition, thermal image, temperature layer splitter, laser range image, human body characteristics
論文種類: 學術論文
相關次數: 點閱:303下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於科技進步迅速,許多利用傳統人力運作的產業,逐漸被自動化的機械、電腦系統所取代,在身分辨識領域內,以往需依靠人力進行門禁看守、檢查的工作,也逐漸被自動化的身分辨識系統取代。因此,如何使身分辨識系統能準確有效萃取並辨認他人人體特徵,即成很重要的關鍵。
    本研究提出一套結合熱像儀萃取臉部溫度特徵與雷射掃描儀掃描影像萃取人體尺寸特徵,組成一套不易受光源、衣著影響的身分辨識系統。本系統分為資料庫建置與辨識共兩個階段,詳述如下。
    於臉部溫度特徵資料庫建置,過程如下:首先將擷取的臉部熱影像,進行人臉鼻孔定位和半圓分割等前處理,利用溫度分層統計各溫度層的像素數量後,存入臉溫特徵資料庫;於雷射掃描人體尺寸特徵資料庫建置過程如下:先透過掃描儀取得雷射人體距離影像並進行前處理後,再藉由三角函數與肩膀定位,算出人體四項尺寸特徵,存入人體尺寸特徵資料庫。
    系統在辨識階段,即利用人臉溫度和人體尺寸特徵資料庫的資料,配合實際量測的數值,進行人體尺寸特徵誤差,與臉溫卡方的參數計算後,將參數交由專家系統,透過內部的規則庫,進行身分的辨別。本研究樣本數為33人,經實驗分析得到的辨識率為96.9%。

    Nowadays, the development of biometric based identity recognition technology is getting faster, causing the industries to make transformation; especially the access management system, which are using fingerprint, voice, and iris recognition equipment to replace humans. As a result, how to make these identity recognition systems work efficiently and accurately, becomes the critical point.
     In this research, the researcher proposed an identity recognition system based on the fusion of thermal image and laser range image, and establish a human body feature database. The system is divided into two stages, which are the data build stage and recognition stage, as detailed below.
     In the part of thermal face feature database building stage, we use half-circle face segmentation and temperature layer splitter algorithm to do the feature extraction task. In the part of the human body feature database building stage, we use the human body range image and the trigonometric functions to calculate the height of the human body and the forehead as the basis of the identity recognition task.
     This system in recognition stage, we use the data of the face temperature and the body shape feature stored in the feature database, to calculate the error rate of the body shape and the chi-square value of the face temperature with the measured value, and use the expert system to do the recognition task. In the last part, we introduce a performance indicator and use 33 person experiment to get the 96.9% recognition rate.

    謝誌 i 摘要 ii 英文摘要 iii 目錄 v 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究限制 3 1.4 研究方法 3 1.5 研究步驟 4 第二章 文獻探討與回顧 7 2.1 個人身分辨識的類型 7 2.1.1 以傳統的方式 7 2.1.2 以生物特徵為基礎 8 2.2 熱影像 10 2.2.1 紅外線簡介 11 2.2.2 熱像儀影像之特性與原理 12 2.2.3 熱影像之特點 13 2.2.4 熱影像之應用領域 14 2.3 人體工學 14 2.3.1 人體工學簡介 14 2.3.2 人體工學應用 15 2.4 雷射掃描成像 16 2.4.1 雷射測距儀原理與特性 16 2.4.2 雷射測距儀相關應用 17 2.5 RFID 17 2.6 專家系統 18 2.6.1 專家系統的發展 18 2.6.2 專家系統架構 19 2.6.3 知識擷取 20 2.6.4 且或樹(AND-OR Tree) 22 2.6.5 知識推理與知識表現 23 2.6.6 專家系統的特色與比較 24 第三章 系統設計 25 3.1 系統架構與流程設計 25 3.1.1 系統架構 25 3.1.2 系統流程 26 3.2 確認身分 27 3.3 雷射掃描成像 28 3.4 熱影像前處理 29 3.4.1 人臉分割技術 30 3.4.2 中值濾波 32 3.4.3 二值化 34 3.4.4 膨脹運算 35 3.4.5 侵蝕運算 37 3.4.6 連通運算 39 3.4.7 鼻孔定位人臉切割 41 3.4.8 去除脖子影像 42 3.5 雷射距離影像前處理 44 3.5.1 人體分割技術 44 3.5.2 去除超出距離範圍資料 46 3.5.3 保留頭髮區域 47 3.5.4 人體檢出 48 3.6 特徵點與特徵區域的選擇與分析 50 3.6.1 紅外線臉部熱影像特徵區域的選擇 50 3.6.2 雷射掃描人體區域的選擇 50 3.7 特徵萃取方法 51 3.7.1 生理特徵 51 3.7.2 溫層分割萃取臉溫特徵技術 51 3.7.3 雷射掃描人體萃取尺寸特徵技術 52 3.8 身分符合性判別的方法 56 3.8.1 卡方考驗 56 3.8.2 誤差百分比 56 3.8.3 標么值計算比對結果 57 3.8.4 結合專家系統進行身分判別 58 3.9 效能評估方法 59 第四章 系統實作 61 4.1 實作環境 61 4.2 軟體與硬體設備 62 4.3 特徵資料的擷取 68 4.3.1 人體尺寸特徵的資料 70 4.3.2 臉部溫度特徵的資料 74 4.4 實驗結果 79 4.4.1 特徵比對的結果 80 4.4.2 交由專家系統辨識並評估實驗的結果 83 第五章 結論與後續研究 87 5.1 結論 87 5.2 後續研究 88 參考文獻 91 自傳 96 附錄一 雷射測距儀相關資料 97 附錄二 熱像儀相關資料 101 附錄三 受測者特徵分佈表 102

    [1] P. Buddharaju, I. T. Pavlidis and P. Tsiamyrtzis, “Physiology-Based Face Recognition,” IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 354-359, Sept. 2005.
    [2] 取自於:
    http://www.hokuyo-aut.jp/02sensor/07scanner/urg_04lx.html.
    [3] B. Guiqiu, L. Xirong and S. Xiaosheng. “Development Survey of Identity Recognition Technology Based on Human Biological Characteristic,” Journal of Tsinghua University (Science and Technology), vol. 41, no. 4, pp. 72-76, April 2001.
    [4] Z. Lian, Z. Rui, Y. Chengbo, “Study on the Identity Authentication System on Finger Vein”, The 2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 1905-1907, May 2008.
    [5] D. Zhang, W.K. Kong, J. You and M. Wong, “Onling Palmprint Identification,” IEEE Transactions on Instrumentation and Measurement, vol.25, pp. 1041-1050, 2003.
    [6] L. H. Xuan and S. Nitsuwat, “Face Rccognition in Video, a Combination of Eignface and Adaptive Skin-Color Model,” IEEE International Conference on Intelligent and Advanced Systems, pp. 742-747, Nov. 2007.
    [7] A. Assadi and A. Behrad, “A New Method for Human Face Recognition Using Texture and Depth Information ,” IEEE Symposium on Neural Network Applications in Electrical Engineering, pp. 201-205, Sept. 2010.

    [8] B. Poon, M. A. Amin and H. Yan, “PCA Based Face Recognition and Testing Criteria,” IEEE International Conference on Machine Learning and Cybernetics, vol. 5, pp. 2945-2949, Jul.2009.
    [9] V. E. Neagoe, A. D. Ropot and A. C. Mugioiu, “Real Time Face Recognition Using Detection Fusion of Neural Classifiers in the Visible and Thermal Infrared Spectrum,” IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 301-306, Sept. 2007.
    [10] J. G. Wang and E. Sung, “Facial Feature Extraction in an Infrared Image by Proxy With a Visible Face Image,” IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 5, pp. 2057-2066, Oct. 2007.
    [11] J. Heo, S. G. Kong, B. R. Abidi and M. A. Abidi, “Fusion of Visual and Thermal Signatures with Eyeglass Removal for Robust Face Recognition,” IEEE Conference on Computer Vision and Pattern Recognition Workshop, pp. 122, Jun. 2004.
    [12] D. A. Socolinsky and A. Selinger, “Thermal Face Recognition in an Operational Scenario,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II1012-II1019, Jun. 2004.
    [13] J. G. Wang, E. Sung and R. Venkateswarlu, “Registration of Infrared and Visible-Spectrum Imagery for Face Recognition,” IEEE International Conference on Automatic Face and Gesture Recognition, pp. 638-644, May 2004.

    [14] A. Poursaberi and B. N. Araabi, “A Novel Iris Recognition System Using Morphological Edge Detector and Wavelet Phase Features,” ICGST International Journal on Graphics, Vision and Image Processing, vol. 5, 2005.
    [15] H. Zhang and D. Hu, “A Palm Vein Recognition System,” International Conference on Intelligent Computation Technology and Automation, vol. 1, pp. 285-288, Jul. 2010.
    [16] N. Bellotto and H. Hu, “Multisensor-Based Human Detection and Tracking for Mobile Service Robots,” IEEE Transactions on Systems, MAN, and Cybernetics, vol. 39, No. 1, 2009.
    [17] 取自於:
    http://www.jaisa.jp/action/group/bio/about%20BIO/gaiyou.htm
    [18] 林志隆,生活中的紅外線,科學發展雜誌第400期,2006年4月。
    [19] 取自於:
    http://ir.lib.cyut.edu.tw:8080/bitstream/310901800/9171/2/ch2.pdf
    [20] S. Komandur, P. W. Johnson, R. L. Storch, and M. G. Yost, “Relation between Index Finger Width and Hand Width Anthropometric Measures,” 31st Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USA, September 2-6, 2009.
    [21] W. Y. Chen, C. K. Tung, C. M. Wang, D. Y. Kuo, “The Non-Contact Human-Height Measurement Scheme,” Proceedings of the 2011 International Conference on Machine Learning and Cybernetics, Guilin, 10-13 July, 2011.
    [22] J. M. Lu and M. J. J. Wang, “The Evaluation of Scan-Derived Anthropometric Measurements,” IEEE Transactions on Instrumentation and Measurement, vol. 59, No. 8, August 2010.
    [23] J. Tang, X. Liu, H. Cheng, and K. M. Robinette, “Gender Recognition Using 3-D Humain Body Shapes,” IEEE Transactions on Systems, Man, and Cybernetics.
    [24] 彭世明、張裕民、涂耀賢、陳永泉,“以3D雷射掃描儀進行建築物受力後裂縫判讀之可行性研究",The 9 National Conference on Strueture Engineering Kaohsiung, Taiwan, Aug 22-24, 2008。
    [25] K. Morioka, S. Kuroiwa, F. Hashikawa, T. Takigawa, “Human Tracking Based on Integration of Laser Range Scanners and Cameras in Intelligent Space” Proceedings of 2011 8th Asian Control Conference (ASCC) Kaohsiung, Taiwan, May 15-18, 2011.
    [26] K. Ohno, T. Kawahara and S. Tadokoro, “Development of 3D Laser Scanner for Measuring Uniform and Dense 3S Shapes of Static Objects in Dynamic Environment,” Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics Bangkok, Thailand, February 21-26, 2009.
    [27] S. Jia, J. Sheng and K. Takase, “Human Recognition Using RFID System with Multi-Antenna,” Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics July 2-5, 2008, Xi’an, China.
    [28] W. L. Ding, F. L. Xiong and Z. J. Cheng, “Study and Implementation of The Expert System For Greenhouse Tomato Planting,” Information Technology and Applications, 2005. ICITA 2005, Third International Conference, Vol. 1, pp.325-329, July 2005.
    [29] X. Y. Huai and F. L. Xiong, “Research on New Architecture Intelligent Systems and Its System Development Environment Visual XF6.1,” International Symposium on Intelligent Agriculture Information Technology (ISIAIT2000), Beijing, P. R. China, pp.1-4, Dec 2000.
    [30] 江孟峰,專家系統導論工具應用,文魁,2002年11月。
    [31] M. Dodridge, “Learning outcomes and their assessment in higher education,” Engineering Science and Education Journal, vol. 8, no. 4, pp. 161-168, Aug. 1999.
    [32] 張紹勳,人工智慧與專家系統,松崗,1993年8月。
    [33] 取自於:http://nknucc.nknu.edu.tw/~kuoch/framework.htm
    [34] 吳怡明(民98年),“手勢辨識應用於遙控音樂撥放系統”,國立台灣科技大學電機工程系碩士論文。
    [35] 李和謙(民100年),“應用溫度層技術之人臉辨識系統設計",國立臺灣師範大學工業教育學系碩士論文。
    [36] J. Mill, T. Tang, Z. Kaminsky, T. Khare, S. Yazdanpanah, L. Bouchard, P. Jia, A. Assadzadeh, J. Flanagan, A. Schumacher, S. C. Wang and A. Petronis, “Epigenomic Profiling Reveals DNA-Methylation Changes Associated with Major Psychosis,” The American Journal of HumanGenetics, vol.82, pp. 696-711, Mar.2008.

    下載圖示
    QR CODE