研究生: |
賴勇仁 Yung-Ren Lai |
---|---|
論文名稱: |
一般子式理想之Grbner基底 Grbner bases of ideals of generic minors |
指導教授: |
洪有情
Hung, Yu-Ching |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | Grbner基底 、子式 |
英文關鍵詞: | Grbner bases, minor |
論文種類: | 學術論文 |
相關次數: | 點閱:105 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
設X是一個各個位置為變數x_ij的矩陣,R=K[X]是一個係數佈於一個體的多項式環。在1989年和1990年,Sturmfels,Caniglia和Guccione各自證明了X的所有相同次數的子式對於某個lexicographic單項式次序會是一組Grbner基底;在1992年,Herzog和Trung進一步提供了一種取不同次數的子式也會是Grbner基底的方法。在這篇論文中,我們又提供了一種取不同次數的子式也會是Grbner基底的方法。
Let K be a field and R=K[X] be the polynomial algebra generated by the entries of a generic m×n matrix X=(x_ij) over K. Let p be a positive integer. Let G_p be the set of all p-minors of X and I be the ideal generated by G_p. Sturmfels and Caniglia et al. had proved that G_p is a Grbner basis for I with respect to some lexicographical term order of R. Later in 1992, Herzog and Trung improved their result. Also, in 1994 Conca obtained a similar result for a symmetric matrix. In this paper, we get some results similar to their results as follows.
Theorem:Let X=(x_ij) be a generic m×n matrix over a field K, and let R=K[X]. Let m≧a_1≧…≧a_r , b_1≦…≦b_r≦n be nonnegative integers, and η_1,…,η_(r+1) be positive integers. Let D_t(X) be the part of the matrix X consisting of the last a_t rows and the first b_t columns. Let G_t(X) be the set of all (η_t)-minors of D_t(X), t=1,…,r and set D_(r+1)(X) be the set of all (η_(r+1))-minors of X. Let I be the ideal of R generated by the G(X)=∪G_t(X); then G(X) is a Grbner basis for I with respect to the lexicographic term order induced from the variable order
x_11> x_12>…> x_1n> x_21>… > x_m1>… > x_mn.
We also prove that if X=(x_ij) in the above theorem is an n×n symmetric matrix, then the theorem also holds.
Willian W. Adams and Philippe Loustaunau, An Introduction
to Grbner Bases. American Mathematical Society, 1994.
L. Caniglia, J. Stein and J.J. Guccione, Ideals of
generic minors, Comm. in Algebra 18(8) (1990), 2633-2640.
H.-C. Chao, Grbner bases of Pfaffians, master
thesis, 2002.
A. Conca, Grbner bases of ideals of minors of a
symmetric matrix, J. Algebra 166 no.2, (1994), 406-421.
J. Herzog and N.V. Trung, Grbner bases and multiplicity
of determinantal and pfaffian ideals, Adv. in Math. 96 (1992),
1-37.
B. Sturmfels, Grbner bases and invariant theory, Adv.
in Math. 76 (1989), 245-259.
H.-J. Wang, Grbner bases of ideals generated by
minors, preprint.
L.-H. Wu, Grbner bases and pfaffians of
skew-symmetric matrices, master thesis, 2004.