研究生: |
楊子瑩 Yang, Tzu-Ying |
---|---|
論文名稱: |
運用SOS紅色螢光蛋白微生物感測器偵測DNA損傷藥劑 SOS-red fluorescent protein whole-cell biosensor for the detection of DNA damaging agents |
指導教授: |
葉怡均
Yeh, Yi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | SOS紅色螢光蛋白微生物感測器 、DNA損傷藥劑 |
英文關鍵詞: | SOS-RFP biosensor, DNA damaging agents |
論文種類: | 學術論文 |
相關次數: | 點閱:119 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以大腸桿菌作為SOS紅色螢光蛋白微生物感測器,此生物感測器可以偵測到DNA損傷藥劑便以紅色螢光蛋白作為DNA受損指標。其設計方式為個別以不同的啟動子(PrecA, PsulA, and PdinH)後面接上紅色螢光蛋白序列當作信號基因,設計完的生物感測器分別加入兩種DNA損傷藥劑:絲裂黴素以及萘啶酸,之後分別用了三種不同的儀器進行偵測,此三種儀器分別為: 多功能盤式分析系統(所有細胞一起偵測)、光學顯微鏡、流式細胞儀(對單一細胞進行偵測)。SOS紅色螢光蛋白微生物感測器可以簡單不繁雜的步驟偵測出DNA損傷藥劑。
E.coli SOS-RFP biosensors which express red fluorescent protein as a signal protein under the control of recA, sulA, and dinH gene promoters in SOS response were constructed for detection of DNA damage and evaluation of DNA damaging agents. Two kinds of DNA damaging agents, which were mitomycin C(MMC), and nalidixic acid(NA), were tested using our E.coli SOS-RFP biosensors cells. We used three techniques to detect responses of biosensors , including microplate reader(detection of whole cells), microscope, and flow cytometry(detection of single cells). The SOS-RFP bacterial biosensors provide a specific and simple method for detecting DNA damaging agents.
1. Verma, N.; Singh, M., Biosensors for heavy metals. Biometals 2005, 18 (2), 121-129.
2. Yagi, K., Applications of whole-cell bacterial sensors in biotechnology and environmental science. Applied microbiology and biotechnology 2007, 73 (6), 1251-8.
3. Errol, C. F.; Graham, C. W.; Wolfram, S.; Richard, D. W.; Roger, A. S.; Tom, E., DNA Repair and Mutagenesis, Second Edition. American Society of Microbiology 2006.
4. Chen, Z.; Lu, M.; Zou, D.; Wang, H., An E. coli SOS-EGFP biosensor for fast and sensitive detection of DNA damaging agents. Journal of Environmental Sciences 2012, 24 (3), 541-549.
5. Bargonetti, J.; Champeil, E.; Tomasz, M., Differential toxicity of DNA adducts of mitomycin C. Journal of nucleic acids 2010, 2010.
6. Kohanski, M. A.; Dwyer, D. J.; Collins, J. J., How antibiotics kill bacteria: from targets to networks. Nature reviews. Microbiology 2010, 8 (6), 423-35.
7. Gillor, O.; Vriezen, J. A.; Riley, M. A., The role of SOS boxes in enteric bacteriocin regulation. Microbiology 2008, 154 (Pt 6), 1783-92.
8. Register, J. C., 3rd; Griffith, J., The direction of RecA protein assembly onto single strand DNA is the same as the direction of strand assimilation during strand exchange. The Journal of biological chemistry 1985, 260 (22), 12308-12.
9. Baharoglu, Z.; Mazel, D., SOS, the formidable strategy of bacteria against aggressions. FEMS microbiology reviews 2014, 38 (6), 1126-45.
10. Justice, S. S.; Hunstad, D. A.; Cegelski, L.; Hultgren, S. J., Morphological plasticity as a bacterial survival strategy. Nature reviews. Microbiology 2008, 6 (2), 162-8.
11. Liu, G.; Draper, G. C.; Donachie, W. D., FtsK is a bifunctional protein involved in cell division and chromosome localization in Escherichia coli. Molecular Microbiology 1998, 29 (3), 893-903.
12. Wang, L.; Lutkenhaus, J., FtsK is an essential cell division protein that is localized to the septum and induced as part of the SOS response. Mol Microbiol 1998, 29 (3), 731-40.
13. Miyagishima, S.; Takahara, M.; Mori, T.; Kuroiwa, H.; Higashiyama, T.; Kuroiwa, T., Plastid division is driven by a complex mechanism that involves differential transition of the bacterial and eukaryotic division rings. The Plant cell 2001, 13 (10), 2257-68.
14. Draper, G. C.; McLennan, N.; Begg, K.; Masters, M.; Donachie, W. D., Only the N-terminal domain of FtsK functions in cell division. Journal of bacteriology 1998, 180 (17), 4621-7.
15. Dorazi, R.; Dewar, S. J., The SOS promoter dinH is essential for ftsK transcription during cell division. Microbiology 2000, 146 ( Pt 11), 2891-9.
16. Norman, A.; Hestbjerg Hansen, L.; Sorensen, S. J., Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters. Applied and environmental microbiology 2005, 71 (5), 2338-46.
17. Biran, A.; Ben Yoav, H.; Yagur-Kroll, S.; Pedahzur, R.; Buchinger, S.; Shacham-Diamand, Y.; Reifferscheid, G.; Belkin, S., Microbial genotoxicity bioreporters based on sulA activation. Analytical and bioanalytical chemistry 2011, 400 (9), 3013-24.
18. Eldar, A.; Elowitz, M. B., Functional roles for noise in genetic circuits. Nature 2010, 467 (7312), 167-73.
19. Arriaga, E. A., Determining biological noise via single cell analysis. Analytical and bioanalytical chemistry 2009, 393 (1), 73-80.