簡易檢索 / 詳目顯示

研究生: 蔡念庭
Tsai, Nien-Ting
論文名稱: 時間序列資料變動點估計方法的探討
A Study of Change Points Analysis for Time Series Data
指導教授: 蔡碧紋
Tsai, Pi-Wen
口試委員: 呂翠珊
Lu, Tsui-Shan
鄭宗記
Cheng, Tsung-Chi
蔡碧紋
Tsai, Pi-Wen
口試日期: 2022/07/26
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 34
中文關鍵詞: 變動點檢測結構變化模型Pruned Exact Linear Time
英文關鍵詞: Changepoint Detection, Pruned Exact Linear Time, Structural Change Model
DOI URL: http://doi.org/10.6345/NTNU202201107
論文種類: 學術論文
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當序列發生統計特性變化時,則會存在變動點。變動點檢測可用於估計序列中單個或多個變動點的位置與其資料的統計特性。本文討論在時間序列AR(1)資料下,使用Pruned Exact Linear Time(PELT)及結構變化模型(structural change model)方法找變動點。以模擬方式比較兩種不同方法在單個及多個變動點情況下,變動點檢測的結果及在不同評估準則的優劣,並且將兩種方法應用於美國COVID-19實際資料。

    Changepoints occur at where statistical properties of the data change. Changepoint detection is able to estimate single or multiple changepoints in the series. In this thesis, we consider the change point detection problem for AR(1) time series data. Pruned Exact Linear Time(PELT)and structural change model methods are used to find the location of the change points. Some simulation studies are done and several criteria are used to compare the results. Additionally, an application to the United States COVID-19 data is presented.

    致謝 I 摘要 II ABSTRACT III 表目錄 V 圖目錄 VI 第1章 緒論 1 第2章 研究方法及評估準則 3 2.1 理論基礎 3 2.2 PRUNED EXACT LINEAR TIME 4 2.3 結構變化模型 9 2.4 評估準則 11 2.5 例子分析 13 第3章 模擬研究及實例資料分析 16 3.1 模擬研究 16 3.1.1單個變動點之模擬結果 16 3.1.2多個變動點之模擬結果 22 3.2 實例資料分析 24 第4章 結論 31 參考資料 33

    Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723.
    Auger, I. E., & Lawrence, C. E. (1989). Algorithms for the optimal identification of segment neighborhoods. Bulletin of mathematical biology, 51(1), 39-54.
    Bai, J. (1994). Least squares estimation of a shift in linear processes. Journal of Time Series Analysis, 15(5), 453-472.
    Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66(1), 47-78.
    Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of applied econometrics, 18(1), 1-22.
    Boysen, L., Kempe, A., Liebscher, V., Munk, A., & Wittich, O. (2009). Consistencies and rates of convergence of jump-penalized least squares estimators. The annals of statistics, 37(1), 157-183.
    Davis, R. A., Lee, T. C. M., & Rodriguez-Yam, G. A. (2006). Structural break estimation for nonstationary time series models. Journal of the American Statistical Association, 101(473), 223-239.
    Finley, T., & Joachims, T. (2005). Supervised clustering with support vector machines. Proceedings of the 22nd international conference on Machine learning, 217-224.
    Harchaoui, Z., & Lévy-Leduc, C. (2010). Multiple change-point estimation with a total variation penalty. Journal of the American Statistical Association, 105(492), 1480-1493.
    Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1), 193-218.
    Jackson, B., Scargle, J. D., Barnes, D., Arabhi, S., Alt, A., Gioumousis, P., Gwin, E., Sangtrakulcharoen, P., Tan, L., & Tsai, T. T. (2005). An algorithm for optimal partitioning of data on an interval. IEEE Signal Processing Letters, 12(2), 105-108.
    Killick, R., Fearnhead, P., & Eckley, I. A. (2012). Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association, 107(500), 1590-1598.
    Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100-115.
    Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 6(2), 461-464.
    Scott, A. J., & Knott, M. (1974). A cluster analysis method for grouping means in the analysis of variance. Biometrics, 30(3), 507-512.
    Truong, C., Oudre, L., & Vayatis, N. (2020). Selective review of offline change point detection methods. Signal Processing, 167, 107299.
    Wikipedia contributors. SARS-CoV-2 Alpha variant. In Wikipedia, The Free Encyclopedia.
    Wikipedia contributors. SARS-CoV-2 Delta variant. In Wikipedia, The Free Encyclopedia.
    Wikipedia contributors. SARS-CoV-2 Omicron variant. In Wikipedia, The Free Encyclopedia.
    Yao, Y.-C. (1984). Estimation of a noisy discrete-time step function: Bayes and empirical Bayes approaches. The annals of statistics, 12(4), 1434-1447.
    Yao, Y.-C. (1988). Estimating the number of change-points via Schwarz'criterion. Statistics & Probability Letters, 6(3), 181-189.
    Zhang, N. R., & Siegmund, D. O. (2007). A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics, 63(1), 22-32.

    無法下載圖示 電子全文延後公開
    2027/08/16
    QR CODE