研究生: |
鄧文霜 Deng, Wun-Shuang |
---|---|
論文名稱: |
有機金屬化合物於碘化鈉溶液之力場模擬 Force Field Simulation for Organometalic Complexes in NaI Solution |
指導教授: |
蔡明剛
Tsai, Ming-Kang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 染料再生 、Lennard-Jones potential 、Force field 、MM3 parameter |
英文關鍵詞: | regeneration, Lennard-Jones potential, Force field, MM3 parameter |
DOI URL: | https://doi.org/10.6345/NTNU202203972 |
論文種類: | 學術論文 |
相關次數: | 點閱:61 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
染料敏化太陽電池(Dye-Sensitized Solar Cell, 簡稱DSSC)的運作過程:染料電子被激發、氧化態染料被電解質還原至氧化態的電解質被還原,完成電路循環。其中染料被電解質還原(regeneration)的反應機制被討論,科學家認為氧化態染料與碘離子的再生反應並非只為一步反應或只有一種反應機制的可能性,所以我們想了解染料和電解質I-/I3- 氧化還原對尚未發生氧化還原反應的現象。
故本篇以染料YE05於碘化鈉溶液下進行模擬,其中碘離子和鈉離子以量子力學方法求得Lennard-Jones potential 公式的rm值與ε值,再利用Tinker軟體進行兩個參數系統的計算。一個是MM3參數系統,另一個將擬合參數帶入分子動力學,並且建構出力場的參數系統,探討不同濃度的碘化鈉溶液其中心金屬Ruthenium與碘離子相互影響的行為,若碘離子無法停留在染料附近會導致電子轉移效率變差,進而影響染料再生的反應機制,實驗結果發現碘離子濃度增加,對於錯合物吸附碘離子並無顯著的幫助。
The working procedure of dye-sensitized solar cell (DSSC): the sensitizer is electronically excited and injects an electron into the conduction band of semiconductor. After electron injection, the oxidized photosensitizer accepts electrons from the I−ion redox mediator, which leads regeneration to the ground state, and the I−is oxidized to I3-. The oxidized redox mediator, I3−, diffuses toward the counter electrode and then reduces to I− ions. Regeneration reaction mechanism has been discussed, and scientists believe that the oxidized dye interaction with I− ions is not a one-step or two-step mechanism. Therefore, we tried to find out the relationship between dye and electrolyte of redox reaction when it’s not occurred yet.
In this study, we performed the simulation with ruthenium bipyridyl sensitizer dyes (YE05) in sodium iodide (NaI) solution, and computed the value of rm and ε in Lennard-Jones potential formula by fitting iodide ion and sodium ion with quantum chemistry calculations. The molecular dynamics simulation was based on Tinker software construct force field to calculate two parameter systems, the MM3 parameter and another one is the results of quantum chemistry calculations. In addition, we investigated the concentration difference of sodium iodide solutions in central metal rutheniumwith iodide ion interaction behavior. The efficiency of electron transfer declines if the iodide ion can’t stay around the dye, and affects the dye regeneration in further. In this experiment, we find out the higher the concentration of iodide ion, for adsorption iodide ion is useless.
1. Robertson, N Angew.Chem. Int. Ed. 2006, 45, 2338.
2. Ooyama, Y.; Harima, Y. Eur.J.Org. Chem. 2009, 2009, 2903.
3. Mishra, A.; Fisher, M.K.R.; Bauerle, P. Angew.Chem. Int. Ed .2009, 48, 2474.
4. Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613.
5. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Grätzel, M.; Park, N. G. Sci. Rep. 2012, 2, 591.
6. Clifford, J. N.; Palomares, E.; Nazeeruddin, Md. K.; Grätzel, M.; Durrant, J. R. J. Phys. Chem. C. 2007, 111, 6561.
7. Schiffmanna, F.; VandeVondelea, Joost.; Huttera, J.; Urakawab, A.; Wirzb, R.; Baikerb, A. PNAS. 2010, 107, 11.
8. Privalov, T.; Boschloo, G.; Hagfeldt, A.; Svensson, P. H.; Kloo, L. J. Phys. Chem. C. 2009, 113, 783.
9. Anderson, A. Y.; Barnes, P. R. F.; Durrant, J. R.; O’Regan, B. C. J. Phys. Chem. C. 2011, 115, 2439.
10. Schrödinger, E. Phys. Rev. 1926, 28, 1049.
11. Kohn, W.; Sham, L. J. Phys.Rev. 1965, 140, A1133.
12. White, J. A.; Bird, D. M. Phys.Rev. 1994, 50, 4954.
13. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
14. Heitler, W.; London, F. Zeitschrift für Physik. 1927, 44, 455.
15. Hehre, W. J.; Radom, L.; Sckleyer, P. v. R.; Pople, J. A., ab initio Molecular Orbital Theory. John Wiley & Sons: New York, 1986.
16. McWeeny, R.; Dierksen, G. J. Chem. Phys. 1968, 49, 4852.
17. Ø. Burrau, Kgl.; Selskab, D. V. Mat. Fys. Medd. 1927, 7, 14.
18. Allinger, N. L. J. Am. Chem. Soc. 1977, 99, 8127.
19. Allinger, N. L. J. Am. Chem. Soc.1989, 111, 8566.
20. Strassner, T.; Taige, M. A. J. Chem. Theory Comput. 2005, 1, 848.
21. Wiest, O.; Wu, Y. Computational Organometallic Chemistry. 2012.
22. Irving, J. H.; Kirkwood, J. G. J. Chem. Phys. 1950, 18, 817.
23. http://cbio.bmt.tue.nl/pumma/index.php/Theory/Potentials.
24. Rapaport, D. C. "The art of molecular dynamics simulation," Cambridge University Press: London, 1997.
25. Frenkel, D.; Smit, B. "Computer simulation of liquids," Academic Press: San Diego, 1991.
26. Frenkel, D.; Smit, B. "Understanding molecular simulation," Academic Press: San Diego, 1996.
27. http://isaacs.sourceforge.net/phys/pbc.html.
28. Ewald, P. P. Ann. Phys. 1921, 64, 253.
29. Bessho, T.; Yoneda, E; Yum, J.-H.; Guglilmi, M.; Tavernelli, I.; Imai, H.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2009, 131, 5930.
30.Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382.
31. Nazeeruddin, M. K.; Angelis, F. D.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835.
32. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I.R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 5179.
33. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 11225.
34. orgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 1988, 110, 1657.
35. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J. Comp. Chem. 1983, 4, 187.