研究生: |
王建翔 Wang, Jian-Siang |
---|---|
論文名稱: |
纖維/電噴灑質譜法中以斜口多孔性聚丙烯中空纖維進行液-液微萃取法之研究 The use of a beveled porous-polypropylene hollow fiber for liquid-liquid microextraction in fiber-spray/mass spectrometry |
指導教授: |
林震煌
Lin, Cheng-Huang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 中空纖維 、液-液微萃取 |
英文關鍵詞: | hollow fibers, liquid-liquid microextraction |
DOI URL: | https://doi.org/10.6345/NTNU202203809 |
論文種類: | 學術論文 |
相關次數: | 點閱:112 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用具多孔性質的中空聚丙烯纖維,經過液-液微萃取後,取代傳統紙片電噴灑質譜法中使用的濾紙,進行電噴灑。經過液-液微萃取實驗後,將聚丙烯中空纖維的一端剪成斜口,斜口角度為25度的形狀後,直接架設到質譜進樣口前方進行電噴灑。因為液-液微萃取,可以將分析物從非常低濃度的溶液中萃取出來,在相同質譜條件下和紙片-電噴灑法所使用的三角形濾紙相比,纖維尖端電噴灑的偵測極限有顯著的改善,偵測極限為1 µg/L,靈敏度提高~2個數量級。本研究使用三種狡詐家藥物來做檢測,包括對-氯安非他命、氯胺酮和3,4-亞甲二氧甲基苯丙胺。這些狡詐家藥物被添加進尿液樣品裡面,經過液-液微萃取後,其偵測極限分別增加了232倍、32倍以及52倍。此外本研究使用最佳化後的實驗條件,萃取完成後,纖維上的分析物從脫附到離子化,整個過程都在一分鐘內完成。
本研究成功以中空纖維進行液-液微萃取,不僅縮短萃取時間、減少使用有機溶劑,並提高萃取效率。開發將市售雙色筆的筆桿,用AB膠和微量離心管相黏,在最下面接上聚丙烯中空纖維,製造出同軸雙管萃取裝置。裝置內含有左右兩支筆管,可依不同目標物更換所需的萃取溶劑。填充完溶劑後,依序將左右兩支筆管推下,使有機溶劑和萃取溶劑流入中空纖維內腔。因筆管容量微小,故此裝置使用的有機溶劑體積很少。當中空纖維內腔填滿萃取溶劑後,即可放入水樣品中進行液-液微萃取。本實驗發現在相同的萃取條件之下,比起傳統使用的液-液微萃取法,萃取步驟更為簡單、方便、易操作。且裝置進行萃取實驗後,可直接在前端施加高電壓,結合質譜儀進行電噴灑,分析目標化合物。本方法既簡單又符合經濟效益,因為具有非常高的靈敏度,操作步驟簡單且能及時偵測離子訊號等優點,所以適合用於狡詐家藥物的快速篩檢。
The use of a porous, hollow polypropylene fiber for sample microextraction in paper spray-mass spectrometry is described. After the microextraction process, one of the end of the hollow fiber was cut into a bevel-shaped, and then used directly for electrospray ionization. Since analytes can be extracted from a very dilute solution using this liquid-liquid extraction process, the limit of detection can be dramatically improved, compared to an ordinary paper-spray mass spectrometry in which a triangular shaped piece of chromatography paper is used. Three types of abused drugs, including p-chloroamphtamine, ketamine and 3,4-methylenedioxy-methamphetamine were selected as the test samples. When these abused drugs were spiked into a urine sample, the limits of detection can be improved to 232-fold, 32-fold and 52-fold, respectively. Furthermore, when the optimized experimental conditions were used, the extract can be eluted and ionized during ~1 min. This method is simple and economical, and is suitable for use in the rapid screening of drugs, since it has a high degree of sensitivity, the operating procedure is simple and an ion signal can be observed immediately. We believe this method has the potential for use in practical analyses and can also be regarded as a helpful tool for use, not only in forensic and clinical analysis, but also biomolecules. Further applications are currently being explored.
參考文獻
[1] H. Wang, J. J. Liu, R. G. Cooks, Z. Ouyang, Angew. Chem. 49 (2010) 877.
[2] J. J. Liu, H. Wang, N. E. Manicke, J. M.Lin, R. G. Cooks, Z. Ouyang, Anal. Chem. 82 (2010) 2463.
[3] W. Xu, N. E. Manicke, R. G. Cooks, Z. Ouyang, J. Assoc. Lab. Auto 15 (2010) 433.
[4] S. Jain, A. Heiser, A. R. Venter, Analyst 136 (2011) 1298.
[5] H. Wang, N. E. Manicke, Q. A. Yang, L. X. Zheng, R. Y. Shi, R. G. Cooks, O. Y. Zheng, Anal. Chem. 83 (2011) 1197.
[6] Z. Zhang, W. Xu, N. E. Manicke, R. G. Cooks, Z. Ouyang, Anal. Chem. 84 (2012) 931.
[7] A. Y. Li, H. Wang, Z. Ouyange, R. G. Cooks, Chem. Commun. 47 (2011) 2811.
[8] N. E. Manicke, Q. A. Yang, H.Wang, S. Oradu, Z. Ouyange, R. G. Cooks, Int. J. Mass. Spectrom. 300 (2011) 123.
[9] N. E. Manicke, P. Abu-Rabie, N. Spooner, Z. Ouyange, R. G. Cooks, J. Am. Soc. Mass. Spectrom. 22 (2011) 1501.
[10] R. D. Espy, N. E. Manicke, Z. Ouyange, R. G. Cooks, Analyst. 137 (2012) 2344.
[11] Z. Zhang, R. G. Cooks, Z. Ouyange, Analyst. 137 (2012) 2556.
[12] S. A. Oradu, R. G. Cooks, Anal. Chem. 84 (2012) 10576.
[13] Z. Zhange, W. Xu, N. E. Manicke, R. G. Cooks, Z. Ouyang, Anal. Chem. 84 (2012) 31.
[14] Q. Yang, N. E. Manicke, H. Wang, C. Petucci, R. G. Cooks, Z. Ouyang, Anal. Bioanal. Chem. 404 (2012) 1389.
[15] R. D. Espy, A.R. Muliadi, Z. Ouyang, R. G. Cooks, Int. J. Mass. Spectrom. 167 (2012) 325.
[16] Q. Yang, H. Wang, J. D. MAAS, W. J. Chappell, N. E. Manicke, R. G. Cooks, Z. Ouyang, Int. J. Mass. Spectrom. 312 (2012) 201.
[17] A. Li, P. Wei, H. C. Hsu, R. G. Cooks, Analyst. 138 (2013) 4624.
[18] H. Wang, Y. Ren, M. N. McLuckey, N. E. Manicke, J. Park, L. Zheng, R. Shi, R. G. Cooks, Z. Ouyang, Anal. Chem. 85 (2013) 11540.
[19] A. M. Hamid,A. K. Jarmusch, V. Pirro, D. H. Pincus,B. G. Clay,G. Gervasi,R. G. Cooks, Anal. Chem. 86 (2014) 7500.
[20] R. D. Espy, S. F. Teunissen, N. E. Manicke, Y. Ren, Z. Ouyang, A. V. Asten, R. G. Cooks, Anal. Chem. 86 (2014) 7712.
[21] F. Tretter, Nervenarzt. 68 (1997) 922.
[22] M. Takahashi, M. Nagashima, J. Suzuki, T. Seto, I. Yasuda, T. Yoshida, Talanta 77 (2009) 1245.
[23] R. L. Cowan, E. J. Charboneau, M. M. Benningfield, T. B. Monroe, Neuroimaging. (2013) 655.
[24] J. L. Poklis, D. J. Clay, A. Poklis, J. Anal. Toxicol. 38 (2014) 113.
[25] J. F. Van Bocxlaer, K. M. Clauwaert, W. E. Lambert, D. L. Deforce, E. G. Van den Eeckhout, A. P. De leenheer, Mass Spectrom. Rev. 19 (2000) 165.
[26] A. Numan, N. D. Danielson, Anal. Chem. Acta 460 (2002) 49.
[27] S. Laks, A. Pelander, E. Vuori, E.Ali-Tolppa, E. Sippola, I. Ojanpera, Anal. Chem. 76 (2004) 7375.
[28] E. Tanaka, T. Kamata, M. Katagi, H. Tsuchihashi, K. Honda, Forensic Sci. Int. 163 (2006) 152.
[29] L. Sleno, R. F. Staack, E. Varesio, G. Hopfgartner, Rapid Commun. Mass spectrum. 21 (2007) 2301.
[30] T. Kanamori, K. Kuwayama, K. Tsujikawa, H. Miyaguchi, Y. T. Iwata, H. Inoue, Xenobiotica 38 (2008) 1476.
[31] T. Kamata, M. Katagi, H. Tsuchihashi, Forensic Toxicol. 28 (2010) 1.
[32] U. Antia, M. D. Tingle, B. R. Russell, J. Forensic. Sci. 55 (2010) 1311.
[33] S. Elliott, Bioanalysis 3 (2011) 249.
[34] A. Namera, A. Nakamoto, T. Saito, M. Nagao, Forensic Toxicol. 29 (2011) 1.
[35] B. Holmstedt, W. J. A. Vandenheuvel, W. L. Gardiner, E. C. Horning, Anal. Biochem. 81 (1964) 51.
[36] F. Centini, A. Masti, I. B. Comparini, Forensic Sci. Int. 83 (1996) 161.
[37] J. Segura, R. Ventura, C. Jurado, J. Chromatogr. B Biomed Sci. Appl. 713 (1998) 61.
[38] D. Hensley, J. T. Cody, J. Anal. Toxicol. 235 (1999) 18.
[39] C. Jurado, M. P. Gimenez, T. Soriano, M Menendez, M. Repetto, J. Anal. Toxicol. 24 (2000) 11.
[40] J. L. Valentine, R. Middleton, J. Anal. Toxicol. 24 (2000) 211.
[41] M. Pellegrini, F. Rosati, R. Pacifici, P. Zuccaro, F. S. Romolo, A. Lopez, J. Chromatogr. B 769 (2002) 243.
[42] H. Inoue, Y. Iwata, T. Kanamori, H. Miyaguchi, K. Tsujikawa, K. Kuwayama, H. Tsutsumi, M. Katagi, H. Tsuchihashi, T. Kishi, Jpn. J. Sci. Tech. Iden. 9 (2004) 165.
[43] S. P. Vorce, J. H. Sklerov, J. Anal. Toxicol. 28 (2004) 407.
[44] S. D. Brandt, S. Freeman, I. A. Fleet, P. McGaph, J. F. Alder, Analyst 130 (2005) 330.
[45] J. M. Wilson, F. McGeorde, S. Smolinske, R. Meatherall, Forensic. Sci. Int. 148 (2005) 31.
[46] T. Ishida, K. Kudo, A. Kiyoshima, H. Inoue, A. Tsuji, N. Ikeda, J. Chromatogr. B 823 (2005) 47.
[47] R. Kikura-Hanajiri, M. Hayashi, K. Saisho, Y. Goda, J. Chromatogr. B 825 (2005) 29.
[48] T. Kanamori, K. Kuwayama, K. Tsujikawa, H. Miyaguchi, Y. Iwata, H. Inoue, T. Kishi, J. Health Sci. 52 (2005) 425.
[49] T. Kanamori, M. Nagashima, J. Suzuki, T. Seto, I. Yasuda, T. Sci. Int. 148 (2005) 31.
[50] S. D. Brandt, D. Mansell, S. Freeman, I. A. Fleet, J. F. Alder, J. Pharm. Biomed. Anal. 41 (2006) 872.
[51] A. Nakamoto, A. Namera, M. Nishida, M. Yashiki, T. Kuramoto, K. Kimura, Forensic Toxicol. 25 (2007) 1.
[52] T. Kamata, M. Katagi, H. Kamata, A. Miki, N. Shima, K. Zaitsu, M. Nishikawa, H. Tsuchihashi, J. Health Sci. 53 (2007) 585.
[53] M. Takahashi, M. Nagashima, J. Suzuki, T. Seto, I. Yasuda, T. Yoshida, J. Health Sci. 54 (2008) 89.
[54] F.Westphal, T. Junge, U. Girreser, S. Stobbe, S. B. Perez, Forensic Sci. Int. 187 (2009) 87.
[55] K. M. Abdel-Hay, T.Awad, J.DeRuiter, C. R. Clark, Forensic Sci. Int. 195 (2010) 78.
[56] T. L. Chang, K. W. Chen, Y. D. Lee, K. Fan, J. Clin. Lab. Anal. 13 (1999) 106.
[57] X. W. You, Z. K. Xing, F. M. Liu, X. Zhang, Anal. Chem. Acta 875 (2015) 54.
[58] X. Xu, F. Liang, J. Shi, X. Zhao, Z. Liu, L. Wu, Y. Song, H. Zhang, Z. Wang, Anal. Chem. Acta 790 (2013) 39.
[59] Y. Yamini, S. Seidi, R. Feizbakhsh, T. Baheri, M. Rezazadeh, J. Sep. Sci. 37 (2014) 2364.
[60] P. Praveen, K. C. Loh, Chem. Eng. J. 255 (2014) 641.
[61] V. L. Tal’roze, G. V. Karpov, I. G. Gordetskii, V. E. Skurat, J. Phys. Chem. 42 (1968) 1658.
[62] A. O. Nier, Rev. Sci. Instrum. 18 (1947) 415.
[63] M. S. B. Munson, F. H. Fild, J. Am. Chem. Soc. 88 (1960) 2621
[64] R. P. W. Scott, C. G. Scott, M. Munroe, J. Jr. Hess, J. Chromatogr. Sci. 99 (1974) 395.
[65] M. Yamashita, J. B. Fenn, J. Phys. Chem. 88 (1984) 4451.
[66] J. Zeleny, Phys. Rev. 10 (1917) 1.
[67] M. Dole, L. L. Mack, R. L. Hines, R. C. Mobley, L. D. Ferguson, M. B. Alice, J. Chem. Phys. 49 (1968) 2240.
[68] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, G. M. Whitehouse, Science 246 (1989) 64.
[69] A. P. Bruins, T. R. Covey, J. D. Henion, Anal. Chem. 59 (1987) 2642.
[70] J. H. Wahl, D. R. Goodlett, H. R. Udsteh, R. D. Smith, Anal. Chem. 64 (1992) 3194.
[71] M. Wilm, M. Mann, Anal. Chem. 68 (1996) 1.
[72] H. Wang, J. J. Liu, R. G. Cooks, Z. Ouyang, Angew. Chem. 49 (2010)877.
[73] J. Deng, Y. Yang, L. Fang, L. Lin, H. Zhou, T. Luan, Anal. Chem. 86 (2014) 11159.
[74] P-B Stig, E-R Kunt, J. Chromatogr. A 1184 (2008) 132.
[75] S-H Tung, P-B Stig, E-R Kunt, J. Chromatogr. A 963 (2002) 3.