研究生: |
楊少廷 |
---|---|
論文名稱: |
基於多核學習之球鞋喜愛度預測方法 Predicting the Popularity of Sneakers by Using Multiple Kernel Learning |
指導教授: | 葉梅珍 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 支持向量回歸 、多核學習 、球鞋 、喜愛度 |
英文關鍵詞: | Support Vector Regression, Multiple Kernel Learning, Sneakers, Popularity |
論文種類: | 學術論文 |
相關次數: | 點閱:282 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此研究中,我們藉由多個不同類型的資訊來描述球鞋產品,以達到預測消費者對於球鞋喜愛度之目的。透過使用Sole Collector球鞋網站上所提供之資料建置了1913雙球鞋之資料庫,資料包含了球鞋圖片、名稱、及價錢等,並利用其當作訓練集與測試集。對於球鞋產品,本工作做了不同面向的描述,擷取多種特徵,並利用機器學習中的多核學習(Multiple Kernel Learning, MKL)方法結合多個適合各自特徵空間的前計算核(Pre-computed Kernel),藉由這些前計算核的線性組合訓練出球鞋喜愛度分數預測模型,透過新球鞋之特徵資訊當作輸入,輸出球鞋受消費者喜愛度的預測分數。實驗部分則提供了多核學習與支持向量回歸(Support Vector Regression, SVR)兩方法比較,結果顯示相同核數下,使用後期融合方法(MKL)較前期融合方法(SVR)在預測球鞋喜愛度問題上,有較佳的關聯性。而使用前計算核廣泛上擁有較徑向基函數核(Radial basis function kernel)更好的表現。
In this paper, we explore using different sources of information to describe sneakers based on which we predict the popularity of sneakers. In particular, we utilize Multiple Kernel Learning (MKL) techniques to train a popularity prediction model consisting of multiple pre-computed kernels that were suited to their own feature space. We further evaluate two regression models: support vector regression (SVR) and MKL to predict a popularity score from several features. In the experiment, we collected 1913 sneakers images from Sole Collector for building a dataset for both training the model and evaluating the prediction accuracy of the approach. We show that a late fusion method (i.e. MKL) has a better performance than an early fusion method (i.e. SVR) in predicting the popularity of sneakers. The pre-computed kernels have better result than radial basis function kernel generally.
[1] Sole Collector | Sneaker news, release dates & marketplace. http://solecollector.com/
[2] NiceKicks.com – The most read source for sneaker news, release dates & history. http://www.nicekicks.com/
[3] Sneaker News - The ultimate news site for sneakerheads. http://sneakernews.com/
[4] G. Salton and M. McGill. Introduction to modern information retrieval, 1983.
[5] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik. Support vector regression machines. Advances in neural information processing systems, pages 155-161, 1997.
[6] K. Kavaklioglu. Modeling and prediction of Turkey’s electricity consumption using Support Vector Regression. Applied Energy. Volume 88, Issue 1, pages 368–375, January 2011.
[7] R. El-Yaniv and A. Faynburd. Autoregressive short-term prediction of turning points using support vector regression. arXiv:1209.0127, 2012.
[8] S. Salcedo-Sanz, Á. M. Pérez-Bellido, A. Portilla-Figueras, and L. Prieto. Short term wind speed prediction based on evolutionary support vector regression algorithms. Expert Systems with Applications, Volume 38, Issue 4, pages 4052-4057, 2011.
[9] M. Narwaria and W. Lin. Objective image quality assessment based on support vector regression. Neural Networks, IEEE Transactions, Volume 21, Issue 3, pages 515-519, 2010.
[10] F. R. Bach, G. R. G. Lanckriet and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. ICML, 2004.
[11] C. Y. Yeh, C. W. Huang, and S. J. Lee. A multiple-kernel support vector regression approach for stock market price forecasting. Expert Systems with Applications, Volume 38, Issue 3, pages 2177–2186, March 2011.
[12] M. Guillaumin, J. Verbeek and C. Schmid. Multimodal semi-supervised learning for image classification. CVPR, 2010.
[13] T.Joutou and K. Yanai. A food image recognition system with Multiple Kernel Learning. ICIP, 2009.
[14] S. Deng, K. Yoshiyama, T. Mitsubuchi, and A. Sakurai. Hybrid method of multiple kernel learning and genetic algorithm for forecasting short-term foreign exchange rates. Computational Economics, pages 1-41, 2013.
[15] J. Zhao, Y. Liu, X. Zhang and W. Wang. A MKL based on-line prediction for gasholder level in steel industry. Control Engineering Practice, Volume 20, Issue 6, pages 629-641. 2012.
[16] K. Spirovska, and A. M. Bogdanova. Multiple kernel learning methods and their application in yeast protein subcellular localization prediction. CIIT, 2012.
[17] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. CVPR, 2005.
[18] C. C. Chang and C. J. Lin. Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, Volume 2, Issue 3, 2011.
[19] S. V. N. Vishwanathan, Z. Sun, N. Theera-Ampornpunt and M. Varma. Multiple kernel learning and the SMO algorithm. NIPS, 2010.
[20] A. Barla, F. Odone and A. Verri. Histogram intersection kernel for image classification, ICIP, 2003.