研究生: |
余青展 Yu, Ching Chan |
---|---|
論文名稱: |
超解析近場結構奈米氧化銀薄膜穿透光譜研究 Study of optical transmittance of AgOx nano thin film in super-resolution near-field structure |
指導教授: |
劉威志
Liu, Wei-Chih 蔡定平 Tsai, Din-Ping |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 超解析近場結構 、氧化銀 、穿透光譜 |
英文關鍵詞: | super-resolution near-field structure, AgOx, optical transmittance |
論文種類: | 學術論文 |
相關次數: | 點閱:409 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,首先以光學顯微鏡外接光譜儀與加熱平台,量測單層氧化銀奈米薄膜(AgOx)與超解析近場結構氧化銀(ZnS-SiO2/AgOx/ ZnS-SiO2) 奈米薄膜之聚焦穿透光譜。隨著溫度的增加,在100℃~200℃左右,單層氧化銀5nm薄膜之穿透率由0.8-0.9下降到0.5-0.6,比較AgOx與Ag-rich的n,k值,證實了氧化銀會因熱分解而析出銀結晶顆粒(AgOx→Ag+O2)導致穿透率下降,在單層氧化銀厚度5nm~60nm,相變溫度在135~178℃之間;加熱到600℃,由照片比較可以明顯看出Ag粒子有蒸散的現象。超解析近場結構氧化銀因為上下保護層的作用,中間的氧化銀因熱分解成銀與氧的混合態,故n,k值可以視為銀與氧的混合態,所以穿透率在160℃左右無明顯的下降;在280℃~300℃,隨著中間氧化銀厚度越厚,氧(O2)從邊緣散溢出去,導致Ag比例增加使穿透率下降,加熱到600℃,由照片比較可以明顯看出Ag粒子在中間層有聚合的現象。另外比較平行光室溫穿透光譜,可以明顯看出隨著超解析近場結構氧化銀之氧化銀厚度越厚,其穿透波谷有往長波長方向位移的現象,我們可以利用厚度控制吸收波長的位置。
The spectra of stand alone nano thin film of AgOx nanometer films measured by an optical microscope spectrometer with hearting stage are presented. An obvious change of transmittance of 5nm-thick AgOx nano thin film was found when rose the sample temperature form 100℃ to 200℃. The transmittance decreases from 0.8~0.9 to 0.5~0.6 in this temperature range. Based on the known values of n and k for AgOx and Ag-rich AgOx film, we determine that the decomposed temperature of AgOx increases from 140℃~178℃ with increase film thickness from 5nm to 60nm. Agparticles are evaporated at temperature above 600℃, which were determined by photo-images. The transmittance of super-resolution near-field structure of AgOx was not decrease at 160℃ because ZnS-SiO2 protect against O2 evaporate. This a mixed state of Ag and O2, the n,k index is also mixed by Ag and O2. The transmittance of super-resolution near-field structure of AgOx was decrease at 280℃~300℃ because O2 was evaporated from edge, the rate of Ag increases and transmittance decreases. Ag particle was assembled at 600℃, it is compared by photos. The comparison of transmittance of parallel incident light is used for the measurement at room temperature. The sandwiched structure of AgOx nano thin film displayed a unique transmittance peak for different thickness of the AgOx nano thin film. The transmittance peak can be controlled by the thickness of AgOx nano thin film.
Reference
1.陳迪,”高密度儲存技術之展望”, 光訊, 第七十四期, p.1(1998)
2.財團法人資訊工業策進會,“光碟技術與應用”(1986)
3.蔡定平, ”近場光學記錄的新發展(上)”, 光訊, 第七十四期, p. 11 (1998)
4.蔡定平, ”近場光學記錄的新發展(下)”, 光訊, 第七十五期, p.29(1999).
5.J. Tominaga, T. Nakano and Atoda, SPIE 3467, p.282 SanDiego(1998)
6.E. Abbe, Arch. Mikrosk. Anst. 9(1873)
7.Lord Rayleigh, Philos. Mag. 5(1896)
8.李文凱, “光纖端面之近場光學研究”, 中正大學物理研究所碩士論文(1997)
9.黃兆義, “商用僅寫一次型光碟之賽安寧染料分子薄膜的近場光學讀寫研究”, 中正大學物理研究所碩士論文(1996).
10.郭文瑞, “近場超高密度儲存研究”, 中正大學物理研究所碩士論文(1997)
11.E. H. Synge, “A suggested method for extending microscopic resolution”, Philos. Mag. Vol.6, p.6356(1928)
12.J.A.O. Keefe, J. Opt. Soc Am. Vol. 46, p.359(1956)
13.E. A. Ash and G. Nichols, Nature Vol.237, p.510(1972)
14.G. Binning and H. Rohrer,“Scanning tunneling microscope”,Helv. Phys. Acta Vol.55, p.726(1982)
15.G. Binning, C. F. Quate and Ch. Gerber, “Atomic force microscope”,Phys. Rev. Lett. Vol.56, p.930(1986)
16.H. Muramatsu, N. Chiba, K. Homma, K. Nakajima and T. Ataka, Appl. Phys. Lett. Vol.66, p.3245 (1995)
17.E. Betzig, P. L. Finn, J. S. Weiner, Appl. Phys. Lett. Vol. 60, p.2484 (1992)
18.B.D. Terris, H.J. Mamin, D. Rugar, W.R. Studenmund and G.S. Kino, Appl. Phys. Lett. Vol.65, p.388(1994)
19.J. Tominaga, T. Nakano and Atoda, Appl. Phys. Lett. Vol.73 p.2078(1998)
20.J. Tominaga, H. Fuji, A. Sato, T. Nakano, T. Fukaya, and N. Atoda, Jpn. J. Appl. Phys. Vol.37, L1323(1998)
21.J. Tominaga, H. Fuji, A. Sato, T. Nakano and N. Atoda, Jpn. J. Appl. Phys. Vol.39, p.957(2000)
22.H. Fuji, J. Tominaga, T. Nakano, N. Atoda and H. Katayama, TuD29 ISOM/ODS’99 in Hawaii(July 1999)
23.J. Tominaga, H. Fuji, L. Men, T. Nakano, H. Katayama and N. Atoda, Jpn. J. Appl. Phys. Vol. 39, p.980(2000)
24.M. Kuwahara, T. Nakano, J. Tominaga, M.B. Lee and N. Atoda, Jpn. J. Appl. Phys. Vol. 38, p.L1079(1999)
25.W. C. Lin, H. H. Chang, Y. H. Lin, Y. H. Fu and D. P. Tsai, Technical digest of ISOM/ODS’2002 p.216(2002)
26.T. Kikukawa, T. Nakano, T. Shima and J. Tominaga, Appl. Phys. Lett. Vol. 81, p.4697(2002)
27.J. Kim, I. Hwang, D. Yoon, I. Park, D. Shin and J. Tominaga, International Super-RENS and plasmon Sciensce & Technolgy Symposium 67 (2003) Japan
28.T. Nakano, Y. Yamakawa, J. Tominaga and N. Atoda, Jpn. J. Appl. Phys. Vol. 40, p.1531(2001)
29.H. Xu and M. Kall, Phy. Rev. Lett. Vol. 89, No. 24, 246802-1(2002)
30.W-C Liu, C-Y Wen, K-H Chen, W. C. Lin and D. P. Tsai, Appl. Phys. Lett. Vol.78, p.685(2001)
31.F. H. Ho, H. H. Chang, Y. H. Lin, B-M Chen, S-Y Wang and D. P. Tsai, Jpn. J. Appl. Phys. Vol. 42, p.1000(2003)
32.T. Shima, and J. Tominaga, J. Vac. Sci Technol A 21(3) p.634(2003)
33.A. V. Kolobov, D. Buechel, P. Fons, T. Shima, M. Kuwahara, J. Tominaga and T. Uruga, Jpn. J. Appl. Phys. Vol. 42, p.1022(2003)
34.A. V. Kolobov, A. Rogalev, F. Wilhelm, N. Jaouen, T. Shima, and J. Tominaga, Appl. Phys. Lett. Vol.84, p.1641(2004)
35.陳力俊等著,材料電子顯微鏡學,國科會精儀中心
36.Y. Y. Yu, S. S. Chang, C. L. Lee and C. R. Chris Wang, J. Phys. Chem. B Vol.101 No.34 p.6661(1997)
37.G. T. Wei, F. K. Liu and C. R. Chris Wang, Anal. Chem. Vol.71 p.2085(1999)
38.S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai and C. R. Chris Wang, Langmuir, Vol.15 p.701(1999)
39.S. Hsieh, S. Meltzer, C. R. Chris Wang, Aristides A. G. Requicha, Mark E. Thompson and Bruce E. Koel, J. Phys. Chem. B Vol.106 No.2, p.231(2002)
40.J. H. Kim, D. Buechel, T. Nakano, J. Tominaga, N. Atoda, H. Fuji and Y. Yamakawa Appl. Phys. Lett. Vol. 77 p.1774(2000)