研究生: |
陳建智 Chen, Chien-Chih |
---|---|
論文名稱: |
避熱式旋轉放電法於針尖1-μm之單晶鑽石探針高效成形研究 Efficient formation of a monocrystalline diamond probe with 1-µm tip-radius by using heat-prevented RWEDM approach |
指導教授: |
陳順同
Chen, Shun-Tong |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 160 |
中文關鍵詞: | 含硼單晶鑽石 、單晶鑽石探針 、避熱式旋轉放電法 、表面粗糙度 |
英文關鍵詞: | Boron-doped monocrystalline diamond (BD-MCD), heat-prevented rotation wire electrical discharge machining, surface roughness, monocrystalline diamond probe |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DME.012.2018.E08 |
論文種類: | 學術論文 |
相關次數: | 點閱:105 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在針對「針尖圓弧半徑1 µm」的單晶鑽石探針,進行快速研磨成形研究。為獲得高效能的單晶鑽石探針之成形加工,研究提出一種「避熱式旋轉放電法(Heat-prevented rotation wire electrical discharge machining, Heat-prevented RWEDM)」,透由避熱路徑演算法,計算出銅線放電加工的最佳路徑,以便對真空焊接(Vacuum brazing)完成的含硼單晶鑽石(Boron-doped monocrystalline diamond, BD-MCD)進行旋轉式放電。高溫火花熔蝕可無視於鑽石的硬度,探針能被快速旋轉熔蝕至針尖10 µm的雛形,除了可移除鑽石與基材的大部分材料外,更可避免鑽石因高熱而脫離母材,著實能大幅減少後續的研磨加工時間。高溫亦可使探針表面由sp3的鑽石結構降至sp2的石墨化層結構,有利於後續研磨過程中的潤滑。完成的鑽石探針雛型,續以陶瓷結合劑鑽石磨輪進行切線式的粗加工、精加工研光及拋光。實驗發現,於研磨的最終階段,添加#14,000超微磨粒,並以進給深度0.1 µm/stroke進行精拋光,可使鑽石探針針尖半徑達1.0 µm,表面粗糙度達Ra86 nm,全程耗時僅2小時36分鐘。比起傳統僅以研磨方式成形,效率提高54%。最後由表面粗糙度量測儀對成形的鑽石探針進行量測驗證,證實本製品的量測結果能達JIS 2001規範的標準差範圍,顯示本研究所開發的單晶鑽石探針能應用於商用的表面粗糙度量測儀的量測,研究所提方法具「技術自主」及「商業化」價值。
This study presents the development of a high-performance hybrid process technique for making an industrial monocrystalline diamond (MCD) probe with 1-μm tip-radius. To realize high-performance formation of MCD probe, a heat-prevented rotation wire electrical discharge machining (RWEDM), by which an optimum CNC path of wire-cutting is schemed via the designed heat-prevent algorithm, is proposed to swiftly erode the boron-doped monocrystalline diamond (BD-MCD) in this study. Regardless of the hardness of workpiece, the diamond probe prototype with 10-μm at tip-radius can be speedily formed by the high-energy spark of temperature. The diamond blank separated from the substrate due to an unduly high discharge heat would not has happened. Besides which, it can remove most of material decreasing substantially the time of consequent grinding process. The high-temperature of spark erosion greatly facilitates the SP3 diamond bond structure into SP2 graphite structure, which is helpful in the effect of lubrication during grinding process. Tangential lapping and polishing are conducted, respectively by a vitrified bond diamond grinding wheel after the diamond probe prototype formed. Experimental results show that the monocrystalline diamond (MCD) probe with 1-μm tip-radius and surface roughness of Ra86 nm can be achieved when combining the grinding depth of 0.1 µm/stroke with ultra-fine abrasives of #14,000. It also demonstrates that total processing time is only 2 hours and 36 minutes, which the machining efficiency has evidently increased by 54% compared with that only using conventional grinding method. The finished diamond probe has been confirmed by a commercial surface roughness measuring instrument and proved that the range of errors fully fall into the JIS 2001 standard. It indicates that the developed monocrystalline diamond probe can been employed as a commercial probe for servicing in the surface roughness measuring. It is expected that the hybrid process technique will significantly contribute to the high-precision industry and to future micro fabrication techniques.
1. Statista, 2017. Global production of rough diamonds from 2005 to 2016 (in million carats), Statista.
2. Linde, O., Martynov, A., Ari Epstein, Stephane Fischler, 2016. The Global Diamond Industry 2016: The Enduring Allure of Timeless Gems, Bain & Company, Inc., pp.36-37.
3. Tabor, D., 1953. Mohs's Hardness Scale - A Physical Interpretation, Proceedings of the Physical Society. Section B, vol.67, no.3, pp.251-256.
4. 宋健民,2000年,超硬材料,全華科技圖書股份有限公司,Chapter 1。.
5. Xiao, H.Y., Li, S.S., Qin, Y.K., Liang, Z.Z., Zhang, Y.S., Zhang, D.M., Zhang, Y.S., 2014. Studies on synthesis of boron-doped Gem-diamond single crystals under high temperature and high pressure, Acta Phys. Sin., vol.63, no.19, p.198101.
6. Gildenblat, G.S., Grot, S.A., Hatfield, C.W., Badzian, A.R., Badzian, T., 1990. High-temperature Schottky diodes with thin-film diamond base, IEEE Electron Device Letters, vol.11, no.9, pp.371-372.
7. Geis, M.W., Rathman, D.D., Ehrlich, D.J., Murphy, R.A., Lindley, W.T., 1987. High-temperature point-contact transistors and Schottky diodes formed on synthetic boron-doped diamond, IEEE Electron Device Letters, vol.8, no.8, pp.341-343.
8. 黃忠良,2001,天然鑽及合成鑽之物性,復漢出版社,pp.107-121.
9. Li, H.S., Li, M.S., Zhou, G., 2005. Recent Development of Synthesis Boron-doped Diamond Crystal, Sciencepaper Online, pp.2-5.
10. Qi, H.Y., Li, H.S., Qi, Y.X., Zhang, Y.P., 2009. Effect of multiple boron sources on boron-doped diamond single crystals, Diamond & Abrasives Engineering, vol.2, no.170, pp.5-8.
11. 芶清泉,1977,含硼黑金剛石的結構與合成機理及其特殊性能的探討,金剛石與磨料磨具工程,vol.S2, pp.28-38.
12. 宮建紅,2006,含硼金剛石單晶的微觀結構、性能與合成機理的研究,博士論文,山東大學。
13. Li, S.S., Liu, S.Q., Li, X.L., Su, T.C., Xiao, H.Y., Ma, H.A., Luo, N., Wang, L.Y., Jia, X.P., 2010. Studies on Characterization and Semiconductor Properties of Type IIb Large Diamond, Journal of Functional Materials, vol.41, no.S1, pp.165-167.
14. LINPO diamond LTD,摻硼合成鑽石,http://www.linpodiamond.com/
15. Raju, G.S., 1994. Chemical assisted mechanical polishing and planarization of CVD diamond substrates for MCM application, M.S.E.E. Thesis, University of Arkansas Library, Fayetteville, AR.
16. 林嘉文,2004,準分子雷射運用於多晶鑽石膜平坦化之理論建立及實驗驗證,碩士論文,國立成功大學。
17. Malshe, A.P., Park, B.S., Brown, W.D., Naseem, H.A., 1999. A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates, Diamond and Related Materials, vol.8, pp.1198-1213.
18. Derry, T.E., Van der Berg, N., Makau, N.W., 2008. Diamond surfaces polished both mechanically and manually; an atomic force microscopy (AFM) study, Diamond & Related Materials, vol.17, pp.127-136.
19. Odake, S., Ohfuji, H., Okuchi, T., Kagi, H., Sumiya, H., Irifune, T., 2009. Pulsed laser processing of nano-polycrystalline diamond: A comparative study with single crystal diamond, Diamond & Related Materials, vol.18, pp.877–880.
20. Chen, S.T., Chang, C.H., 2013. Development of an ultrathin BD-PCD wheel-tool for in situ microgroove generation on NAK80 mold steel, Journal of Materials Processing Technology, vol.213, pp.740-751.
21. Zong, W.J., Zhang, J.J., Liu, Y., Sun, T., 2014. Achieving ultra-hard surface of mechanically polished diamond crystal by thermo-chemical refinement, Applied Surface Science, vol.316, pp.617-624.
22. Kim, J., Je, T.J., Cho, S.H., Jeon, E.C., Whang, K.H., 2014. Micro-Cutting with Diamond Tool Micro-Patterned by Femtosecond Laser, International Journal of Precision Engineering and Manufacturing, vol.15, no.6, pp.1081-1085.
23. Teodoro, G., Sichen, M., Marcell, K., Niels, Q., 2018. Freestanding optical micro-disk resonators in single-crystal diamond by reactive ion etching and multidirectional focused ion-beam milling, Proceedings of SPIE, vol.10547.
24. Samuel, M.P., Richard, R.G., David, A.H., Lee, C.B., 2018. Fabrication of (111)-faced single-crystal diamond plates by laser nucleated cleaving, Diamond & Related Materials, vol.84, pp.20-25.
25. Nozomi, T., Jun, I., Jiwang, Y., 2018. Microgrooving of a single-crystal diamond tool using a picosecond pulsed laser and some cutting tests, Precision Engineering, vol.53, pp.252-262.
26. Ondič, L., Fait, J., Varga, M., Maňák, J., Nováková J., 2018. Polycrystalline diamond photonic crystal slabs prepared by focused ion beam milling, Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018), pp. NoTu4J.6.
27. Bae, J.H., Ono, T., Esashi, M., 2003. Boron-doped diamond scanning probe for thermo-mechanical nanolithography, Diamond and Related Materials, vol.12, pp.2128–2135.
28. Tuyakova, F.T., Obraztsova, E.A., Ismagilov, R.R., 2016. Single-crystal diamond pyramids: synthesis and application for atomic force microscopy, Journal of Nanophotonics, vol.10, pp.012517.
29. Sumiya, H., Irifune, T., 2007. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature, Journal of Materials Research, vol.22, no.8, pp.2345-2351.
30. Feneberger, K., 1973. GRAPHITE: SOLID LUBRICANT, Industrial Lubrication and Tribology, vol. 25, iss 5, pp.176-178.
31. Hall, H.T., High temperature high pressure apparatus, U.S. Patent 2941248 A, June 21, 1960.
32. Crosby, J.N., Hanley, R.S., Chemical vapor deposition, U.S. Patent 4250210 A, Feb 10, 1981.
33. 陳順同,2016,超精密加工講義,國立臺灣師範大學機電工程學系。
34. Asmussen, J., Grotjohn, T.A., Schuelke, T., Becker, M.F., Yaran, M.K., King, D.J., 2008. Wicklein, S., Reinhard, D.K. Multiple substrate microwave plasma-assisted chemical vapor deposition single crystal diamond synthesis, American Institute of Physics, vol.93, p.031502.
35. Blank, V.D., Kulnitskiy, B.A., Perezhogin, I.A., 2009. Structural peculiarities of carbon onions, formed by four different methods: Onions and diamonds, alternative products of graphite high-pressure treatment, Scripta Materialia, vol.60, pp.407-410.
36. Bundy, F.P., Hall, H.T., Strong, H.M., Wentorf, R.H., 1955. Man-made Diamonds, Nature, vol.176, pp.51-55.
37. Hall, H.T., Diamond synthesis, U.S. Patent 2947608 A, Oct 2, 1960.
38. Pierson, H.O., 1993. Handbook of carbon, graphite, diamond and fullerenes. Properties, processing and applications, Noyes Publications, pp.244-277.
39. FACT diamond,Diamond Types,http://www.factdiamond.com/
40. 曾永華、陳柏穎、鄭宇明、游銘永,2014,人造鑽石的合成及應用,科學發展,vol.497, pp.60-67.
41. Werner, M., Job, R., Zaitzev, A., Faiirner, W.R., Seifert, W., Johnston, C., Chalker, P.R., 1996. The Relationship between Resistivity and Boron Doping Concentration of Single and Polycrystalline Diamond, physica status solidi (a), vol.154, no.1, pp.385-393.
42. Werner, M., Dorsch, O., Baerwind, H.U., Obermeier, E., Haase, L., Seifert, W., Ringhandt, A., Johnston, C., Romani, S., Bishop, H., Chalker, P.R., 1994. Charge transport in heavily Bdoped polycrystalline diamond films, Applied Physics Letters,vol.64, p.595.
43. Dr. Katarzyna Skorupska, Doped Semiconductors, http://www.uwyo.edu/cpac/_files/docs/kasia_lectures/2-intrinsicanddopedsemiconductors.pdf .
44. US Synthetic, High-Pressure High-Temperature Technology, http://ussynthetic.com/ .
45. 陳偉恩,2010,含硼聚晶鑽石材料最新研究探討,碩士論文,私立華梵大學。
46. Schuelke, T., Grotjohn, T.A., Diamond polishing, Diamond & Related Materials, Vol. 32, pp. 17-26, 2013
47. Kraus, E.H., Slawson, C.B., 1939. Variation of Hardness in the Diamond, American Mineralogist, vol.24, pp.661-676.
48. Element six, http://www.e6.com/
49. 張松柏,2012,鋁金屬6061真空硬焊與氣體鎢極電弧對接焊件之疲勞性質研究,碩士論文,國立中央大學,pp.12-18.
50. Callister, W.D., 1993. Fundametals of Materials science and Engineering, John Wiley & Sons, New York Inc., pp.130-139.
51. Stephenson, D.J., 1983. Diffusion Bonding, Distributed by Chapman & Hall North Way, pp.12-18.
52. 林彥勝,Diffusion,http://www2.isu.edu.tw/upload/52/37/files/dept_37_ lv_3_21880.pdf
53. Pozrikidis, C., 2012. Capillary attraction of floating rods, Engineering Analysis with Boundary Elements, vol.36, pp.836-844.
54. 流體力學講義,www.ck.tp.edu.tw/~pxhuang/lecture/ch11-Fluid.ppt
55. 黃忠良,1995,工業鑽石合成及接著,復漢出版社,pp.1-99.
56. 董光雄,1988,放電加工,復文書局出版社,pp.74-75.
57. 蕭瑞陽,放電加工原理與應用-線切割放電加工, http://eshare.stut.edu.tw/EshareFile/2010_4/2010_4_e1e12437.ppt/
58. Jameson, E.C., 2001. Electrical Discharge Machining, The Society of Manufacturing Engineers, p.129.
59. Leipunski, O.I., 1939. Snythetic diamonds, Usp Khim, vol.8, pp.1519-1534.
60. 庄司克雄,2004,超精密加工と非球面加工,NTS, pp.7-11.
61. Aerotech, Controller Configuration, A3200 Help (5.05.003), A3200 Software-Based Machine Controller, 2016, http://www.aerotech.com/
62. Sommer, C., 2000. Non-traditional machining handbook, Advance Publishing Inc., pp.117-124.
63. 慶鴻機電工業股份有限公司,CNC線切割放電加工機,線切割機保養手冊,B1 edition, 2008.
64. 台中精機,立式綜合加工機,http://www.or.com.tw/uploads/product/ OR_Vcenter_55_70.pdf
65. NAKANISHI, Micro-grinder, Motors & Spindles, 08/09 Edition, pp.2-13, 2008.
66. 規格說明書,高速資料擷取(DAQ)模組,National Instruments.
67. 規格說明書,真空焊接爐,台灣鑽石工業股份有限公司。
68. 漢磊股份有限公司,工具顯微鏡,http://www.aixon.com.tw/
69. JEOL USA Inc., Scanning Elextron Microscope JSM-6360, http://www.jeolusa.com/
70. Jobin Yvon T64000拉曼檢測儀,HORIBA Scientific,http://www.horiba.com
71. 3D測量雷射共焦顯微鏡,OLYMPUS,http://www.olympus-ims.com/ en/metrology/ols4000/
72. Saengsai, A., 2014. Fretting fatigue behavior of SUS304 stainless steel under pressurized hot water, Tribology International, vol.79, pp.52-58.
73. SUS304,304不鏽鋼,http://www.matweb.com/
74. 規格說明書,陶瓷結合劑鑽石磨輪,一品鑽石工業股份有限公司
75. Grillo, S.E., Field, J.E., Bouwelen, F.M., 2000. Diamond polishing: the dependency of friction and wear on load and crystal orientation, Journal of Physics D: Applied Physics, vol.33, pp. 985-990.
76. Okano, K., Akiba, Y., Kurosu, T., Iida, M., Nakamura, T., 1990. Synthesis of b-doped diamond film. Journal of Crystal Growth, vol.99, pp.1192-1195.
77. 陳祈宏,2014,高效能精微線切割放電加工電源開發,碩士論文,國立臺灣師範大學。
78. 施勝禹,2016,精微CNC鑽石研磨機開發應用於表面粗糙度量測之單晶鑽石探針製作研究,碩士論文,國立臺灣師範大學。
79. IMAHASHI,精微鑽石研磨工具機,http://www.imahashi.net/