簡易檢索 / 詳目顯示

研究生: 吳浩宇
Wu, Hao-Yu
論文名稱: 華語中說謊的聲學及電聲門訊號特徵
Acoustic and EGG Profiles of Deception in Mandarin
指導教授: 甯俐馨
Ning, Li-Hsin
口試委員: 邱振豪
Chiu, Chen-Hao
盧郁安
Lu, Yu-An
甯俐馨
Ning, Li-Hsin
口試日期: 2022/07/18
學位類別: 碩士
Master
系所名稱: 英語學系
Department of English
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 167
中文關鍵詞: 說謊聲學電聲門華語
英文關鍵詞: Deception, Acoustics, Electroglottography (EGG), Mandarin
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200841
論文種類: 學術論文
相關次數: 點閱:90下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討華語中說謊的聲學及電聲門訊號特徵,並且有三大研究重點:(ㄧ)說謊時的聲學及電聲門整體特徵、(二)性別對於聲學及電聲門特徵的影響以及(三)成功/失敗的謊話及實話的特徵。研究參與者為三十六位華語母語者(十八位女性)。每位研究參與者皆參加由十四個生平問題組成的互動式訪談問答,並且由另外兩位實驗人員來進行訪談。研究參與者必須選擇在一半的問題中說謊,而在另一半的問題中說真話。研究參與者在回答問題時,聲學及電聲門的訊號同時進行錄製。研究參與者的回答條件以及實驗人員的知覺條件皆有紀錄起來方便後續分析使用。本研究共使用了二十種聲學參數[包含基頻(F0)相關參數、聲音強度(intensity)相關參數、第一至第五共振峰(formant)、頻率擾動度(jitter)、音量擾動度(shimmer)、諧噪比(HNR)、第一及第二諧波差(H1-H2)、語速]以及十四種電聲門參數[包含導數法接觸商(CQDEGG)、混合法接觸商(CQMIX)、接觸時間商(contacting-time quotient)、分離時間商(decontacting-time quotient)、中坡法速度商(speed quotient with a mid-slope criterion)、接觸指數(contact index)、基頻相關參數、頻率擾動度、音量擾動度、諧噪比]。
    研究結果顯示中文說謊的整體特徵包含基頻平均值、聲音強度平均值、第一共振峰、第五共振峰、接觸商、分離時間商、接觸指數等數值上升,以及頻率擾動度、音量擾動度、諧噪比、第四共振峰等數值下降。此結果與過往的文獻有相當程度的呼應,並意味著中文的謊言可能與特定的語用功能(如:聲音聽起來更堅定及好聽)、較強的情緒激發、聲門接觸對稱性上升、較為受壓的發聲等特質有關。此外,中文說謊同時存在跨性別和特定性別特徵。跨性別特徵包含聲音強度平均值、第五共振峰上升以及頻率擾動度、諧噪比、第四共振峰下降,更加突顯兩性皆會使用特定語用功能(如:試圖聽起來更堅定及好聽)的可能性。特定性別特徵則包含女性說謊時會在基頻平均值、音量擾動度、第一共振峰、第三共振峰、分離時間商等數值上升以及在基頻最大值、接觸商等數值下降。男性則有接觸商、接觸指數上升以及音量擾動度下降等特徵。此結果顯示女性在說謊時可能較容易有情緒激發及構音上的改變,而兩性在發聲特質上可能有相反的變化趨勢(亦即女性有較輕的發聲、男性有較受壓的發聲)。最後,失敗謊話與成功謊話相較之下有基頻平均值、頻率擾動度、音量擾動度上升以及基頻最大值、分離時間商下降的特徵,代表其有音高較高、聲音較不好聽、語調峰值較低、聲帶分離時間較短等特質。失敗真話與成功真話相較之下則有分離時間商、第一共振峰上升以及第三共振峰下降的特徵,顯示其構音相關之頻譜特質及較長的聲帶分離時間。此結果揭露華語使用者將謊話及真話視為真或假的可能判斷依據。

    This study examined the acoustic and electroglottographic (EGG) profile of Mandarin deception with three major focuses: (1) the global acoustic and EGG characteristics of Mandarin deception, (2) the influence of gender and (3) characteristics of successful/ unsuccessful lies and truths. Thirty-six Mandarin speakers (18 females) participated in an interactive interview game, where they were asked 14 biographical questions by two additional experimenters. Participants were instructed to choose half of the questions for deceptive answers and the other half for truthful answers. Acoustic and EGG signals of the participants’ responses were simultaneously recorded. Conditions (deception & truth) of both participants’ production and experimenters’ perception were noted for analyses. Analyses included 20 acoustic parameters [i.e., F0-related measures, intensity-related measures, formants (F1-F5), jitter, shimmer, harmonics-to-noise ratio (HNR), H1-H2, and speech rate] and 14 EGG parameters [i.e., CQDEGG, CQMIX, contacting-time quotient (CTQ), decontacting-time quotient (DTQ), speed quotient with a mid-slope criterion (SQ-mid), contact index (CI), F0-related measures, jitter, shimmer, and HNR].
    Increases in F0 mean, intensity mean, F1, F5, CQ, DTQ, and CI as well as decreases in jitter, shimmer, HNR, F4 significantly correlated with deception across gender. These features suggest Mandarin deception could be tied to specific pragmatic functions (e.g., sounding firmer and more pleasant), greater emotional arousal, increased glottal contact symmetry and more pressed phonation, which well echoed findings from the literature. Additionally, both cross-gender and gender-specific features exist in Mandarin deception. Cross-gender features included increases in intensity mean and F5 and decreases in jitter, HNR and F4, which further strengthened the idea that certain pragmatic functions (e.g., trying to sound firmer and more pleasant) are utilized by both genders. Gender-specific features encompassed increases in F0 mean, shimmer, F1, F3, and DTQ as well as decreases in F0 maximum and CQ for female deception and increases in CQ and CI and decreases in shimmer for male deception, showing females are more prone to changes in emotional arousal and articulation and that both genders could undergo opposing changes in phonation quality (i.e., lighter registers for females and heavier registers for males). Furthermore, unsuccessful lies differed from their successful counterparts by increases in F0 mean, jitter and shimmer as well as decreases in F0 maximum and DTQ, showing qualities like higher F0 levels, less pleasant voice qualities, compromised intonation peaks, and shorter vocal fold decontacting periods. Unsuccessful truths, on the other hand, manifested increases in DTQ and F1 and decreases in F3, denoting spectral properties pertaining to articulation and longer vocal fold decontacting periods. The results could bring to light the mechanisms behind how Mandarin speakers perceive lies and truths as deceptive or truthful.

    Acknowledgements i 摘要 iii Abstract v Table of Content vii List of Tables xi List of Figures xiv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Questions 7 1.3 Organization of the Study 7 Chapter 2 Literature Review 8 2.1 Deception and EGG 8 2.1.1 The Mechanism Behind EGG 9 2.1.2 EGG and DEGG 11 2.1.3 Common (D)EGG Measures 12 2.1.3.1 CQEGG and CQDEGG 13 2.1.3.2 Contacting-time Quotient (CTQ) and Decontacting-time Quotient (DTQ) 14 2.1.3.3 Speed Quotient (SQ) and Contact Index (CI) 15 2.1.4 EGG Features Shared with Acoustic Signals 17 2.1.4.1 Fundamental Frequency (F0) 17 2.1.4.2 Jitter and Shimmer 18 2.1.4.3 Harmonics-to-noise Ratio (HNR) 18 2.2 Deception and Acoustic Features 19 2.2.1 Acoustic Features Derived from English Corpora 20 2.2.1.1 Fundamental Frequency (F0) 21 2.2.1.2 Intensity 24 2.2.1.3 Formants 25 2.2.1.4 Voice Quality 26 2.2.1.5 Speech Rate and Duration 27 2.2.2 Features Derived from Mandarin Corpora 28 2.3 The Influence of Gender 32 2.4 Interim Summary 33 Chapter 3 Methods 36 3.1 Participants 36 3.2 Materials 37 3.3 Procedure 37 3.4 Measurements 40 3.4.1 EGG Measurement 41 3.4.1.1 Contact Quotient (CQ) 41 3.4.1.2 Contacting-time Quotient (CTQ) and Decontacting-time Quotient (DTQ) 41 3.4.1.3 Speed Quotient with a Midslope Criterion (SQ-mid) and Contact Index (CI) 42 3.4.1.4 Fundamental Frequency (F0) 44 3.4.1.5 JitterEGG, ShimmerEGG, and HNREGG 44 3.4.2 Acoustic Measurement 45 3.4.2.1 F0acoustic 45 3.4.2.2 Intensity 45 3.4.2.3 Formants 45 3.4.2.4 Jitteracoustic, Shimmeracoustic, HNRacoustic, and H1-H2 46 3.4.2.5 Speech Rate 47 3.5 Data Analyses 47 Chapter 4 Results 52 4.1 EGG and Acoustic Features Characteristic of Deception 52 4.1.1 Global EGG Model 52 4.1.1.1 Global EGG Descriptive Statistics 53 4.1.1.2 Global EGG Model Summary 53 4.1.1.3 Global EGG Model Interpretation 56 4.1.2 Global Acoustic Model 61 4.1.2.1 Global Acoustic Descriptive Statistics 61 4.1.2.2 Global Acoustic Model Summary 64 4.1.2.3 Global Acoustic Model Interpretation 67 4.2 The Influence of Gender 72 4.2.1 Female 72 4.2.1.1 Female EGG Model 72 4.2.1.2 Female Acoustic Model 80 4.2.2 Male 88 4.2.2.1 Male EGG Model 88 4.2.2.2 Male Acoustic Model 95 4.3 Characteristics of Successful/Unsuccessful Lies and Truths 103 4.3.1 Successful vs. Unsuccessful Lies 103 4.3.1.1 Deception EGG Model 103 4.3.1.2 Deception Acoustic Model 110 4.3.2 Successful vs. Unsuccessful Truths 116 4.3.2.1 Truth EGG Model 116 4.3.2.2 Truth Acoustic Model 121 Chapter 5 Discussion 128 5.1 EGG and Acoustic Features Characteristic of Deception 132 5.2 The Influence of Gender 139 5.3 Characteristics of Successful/Unsuccessful Lies and Truths 142 5.4 Limitation and Future Study 144 Chapter 6 Conclusion 147 References 149 Appendix I 166 Appendix II 167

    Abramson, A. S., Tiede, M. K., & Luangthongkum, T. (2015). Voice register in Mon: Acoustics and electroglottography. Phonetica, 72(4), 237-256.
    Avelino, H. (2010). Acoustic and electroglottographic analyses of nonpathological, nonmodal phonation. Journal of voice, 24(3), 270-280.
    Awan, S. N., Krauss, A. R., & Herbst, C. T. (2015). An examination of the relationship between electroglottographic contact quotient, electroglottographic decontacting phase profile, and acoustical spectral moments. Journal of voice, 29(5), 519-529.
    Babacan, O., Drugman, T., d'Alessandro, N., Henrich, N., & Dutoit, T. (2013). A quantitative comparison of glottal closure instant estimation algorithmson a large variety of singing sounds. Paper presented at the 14th Annual Conference of the International Speech Communication Association (Interspeech 2013).
    Bachenko, J., Fitzpatrick, E., & Schonwetter, M. (2008). Verification and implementation of language-based deception indicators in civil and criminal narratives. Paper presented at the Proceedings of the 22nd International Conference on Computational Linguistics (COLING 2008).
    Baken, R. J. (1992). Electroglottography. Journal of voice, 6(2), 98-110.
    Barge, J. K., Schlueter, D. W., & Pritchard, A. (1989). The effects of nonverbal communication and gender on impression formation in opening statements. Southern Communication Journal, 54(4), 330-349.
    Bele, I. V. (2006). The speaker's formant. Journal of voice, 20(4), 555-578.
    Bier, S. D., & Watson, C. I. (2012). Electroglottographic Analysis of Young and Old Speakers of New Zealand English'. Paper presented at the 14th Australasian International Conference on Speech Science and Technology.
    Bier, S. D., Watson, C. I., & McCann, C. M. (2014). Using the perturbation of the contact quotient of the EGG waveform to analyze age differences in adult speech. Journal of voice, 28(3), 267-273.
    Bier, S. D., Watson, C. I., & McCann, C. M. (2017). Dynamic measures of voice stability in young and old adults. Logopedics Phoniatrics Vocology, 42(2), 51-61.
    Boersma, P., & Weenink, D. (2021). Praat: doing phonetics by computer; version 6.1. 42. In.
    Bond Jr, C. F., & DePaulo, B. M. (2006). Accuracy of deception judgments. Personality and social psychology Review, 10(3), 214-234.
    Buller, D. B., Burgoon, J., Buslig, A., & Roiger, J. (1993). The language of interpersonal deception. Paper presented at the Annual Meeting of the International Communication Association, Washington, DC (May).
    Burgoon, J. K., Birk, T., & Pfau, M. (1990). Nonverbal behaviors, persuasion, and credibility. Human communication research, 17(1), 140-169.
    Caffier, P. P., Nasr, A. I., Rendon, M. d. M. R., Wienhausen, S., Forbes, E., Seidner, W., & Nawka, T. (2018). Common vocal effects and partial glottal vibration in professional nonclassical singers. Journal of voice, 32(3), 340-346.
    Chang, Y.-F. (2009). How to say no: An analysis of cross-cultural difference and pragmatic transfer. Language Sciences, 31(4), 477-493.
    Chen, X. L., Ita Levitan, S., Levine, M., Mandic, M., & Hirschberg, J. (2020). Acoustic-prosodic and lexical cues to deception and trust: deciphering how people detect lies. Transactions of the Association for Computational Linguistics, 8, 199-214.
    Chen, Y., Robb, M. P., & Gilbert, H. R. (2002). Electroglottographic evaluation of gender and vowel effects during modal and vocal fry phonation.
    Cheng, D. (2011). New insights on compliment responses: A comparison between native English speakers and Chinese L2 speakers. Journal of Pragmatics, 43(8), 2204-2214.
    Childers, D. G., Hicks, D., Moore, G., & Alsaka, Y. (1986). A model for vocal fold vibratory motion, contact area, and the electroglottogram. The Journal of the Acoustical Society of America, 80(5), 1309-1320.
    Childers, D. G., & Krishnamurthy, A. K. (1985). A critical review of electroglottography. Critical reviews in biomedical engineering, 12(2), 131-161.
    Childers, D. G., & Wu, K. (1991). Gender recognition from speech. Part II: Fine analysis. The Journal of the Acoustical Society of America, 90(4), 1841-1856.
    Chittaranjan, G., & Hung, H. (2010). Are you awerewolf? detecting deceptive roles and outcomes in a conversational role-playing game. Paper presented at the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.
    Cole, T. (2001). Lying to the one you love: The use of deception in romantic relationships. Journal of Social and Personal Relationships, 18(1), 107-129.
    Colton, R. H., & Conture, E. G. (1990). Problems and pitfalls of electroglottography. Journal of voice, 4(1), 10-24.
    De Jong, N. H., & Wempe, T. (2009). Praat script to detect syllable nuclei and measure speech rate automatically. Behavior research methods, 41(2), 385-390.
    DePaulo, B. M., Lindsay, J. J., Malone, B. E., Muhlenbruck, L., Charlton, K., & Cooper, H. (2003). Cues to deception. Psychological bulletin, 129(1), 74.
    Ekman, P. (1992). Telling lies. New York: Norton.
    Ekman, P. (2009). Lie catching and microexpressions. The philosophy of deception, 1(2), 5.
    Ekman, P., & Friesen, W. V. (1974). Detecting deception from the body or face. Journal of personality and social psychology, 29(3), 288.
    Ekman, P., Friesen, W. V., & Scherer, K. R. (1976). Body movement and voice pitch in deceptive interaction.
    Ekman, P., Friesen, W. V., & Simons, R. C. (1985). Is the startle reaction an emotion? Journal of personality and social psychology, 49(5), 1416.
    Ekman, P., O'Sullivan, M., Friesen, W. V., & Scherer, K. R. (1991). Invited article: Face, voice, and body in detecting deceit. Journal of nonverbal behavior, 15(2), 125-135.
    Enos, F. (2009). Detecting deception in speech: Columbia University.
    Eriksson, A., & Lacerda, F. (2007). Charlatanry in forensic speech science: A problem to be taken seriously. International Journal of Speech, Language and the Law, 14(2), 169-193.
    Esling, J. H. (1984). Laryngographic study of phonation type and laryngeal configuration. Journal of the International Phonetic Association, 14(2), 56-73.
    Esposito, C. M. (2012). An acoustic and electroglottographic study of White Hmong tone and phonation. Journal of phonetics, 40(3), 466-476.
    Fabre, P. (1957). Un procede electrique percutane d’inscription de l’accolement glottique au cours de la phonatione: glottographie de haute frequence. Premiers resultats. Bull Acad Natl Med, 3, 9-27.
    Fornaciari, T., & Poesio, M. (2013). Automatic deception detection in Italian court cases. Artificial intelligence and law, 21(3), 303-340.
    Fourcin, A. J. (1971). First applications of a new laryngograph. Med Biollus, 21, 172-182.
    Fox, J., Weisberg, S., & An, R. (2019). Companion to Applied Regression, Third. In: Sage.
    Frank, M. G., Menasco, M. A., & O’Sullivan, M. (2008). Human behavior and deception detection. Handbook of science and technology for homeland security, 5, 1-12.
    Frick, R. W. (1985). Communicating emotion: The role of prosodic features. Psychological bulletin, 97(3), 412.
    Frokjaer-Jensen, B., & Thorvaldsen, P. (1968). Construction of a Fabre glottograph. ARIPUC, 3, 1.
    Gareth, J., Daniela, W., Trevor, H., & Robert, T. (2013). An introduction to statistical learning: with applications in R: Spinger.
    Goudbeek, M., Goldman, J. P., & Scherer, K. R. (2009). Emotion dimensions and formant position. Paper presented at the Tenth Annual Conference of the International Speech Communication Association.
    Gowda, D. N., & Kurimo, M. (2013). Analysis of breathy, modal and pressed phonation based on low frequency spectral density. Paper presented at the INTERSPEECH.
    Guzman, M., Correa, S., Munoz, D., & Mayerhoff, R. (2013). Influence on spectral energy distribution of emotional expression. Journal of voice, 27(1), 129. e121-129. e110.
    Hampala, V., Garcia, M., Švec, J. G., Scherer, R. C., & Herbst, C. T. (2016). Relationship between the electroglottographic signal and vocal fold contact area. Journal of voice, 30(2), 161-171.
    Henrich, N., d’Alessandro, C., Doval, B., & Castellengo, M. (2005). Glottal open quotient in singing: Measurements and correlation with laryngeal mechanisms, vocal intensity, and fundamental frequency. The Journal of the Acoustical Society of America, 117(3), 1417-1430.
    Herbst, C. T. (2020). Electroglottography–an update. Journal of voice, 34(4), 503-526.
    Hirschberg, J. B., Benus, S., Brenier, J. M., Enos, F., Friedman, S., Gilman, S., . . . Michaelis, L. (2005). Distinguishing deceptive from non-deceptive speech.
    Hirst, D. J. (2007). A Praat plugin for Momel and INTSINT with improved algorithms for modelling and coding intonation. Paper presented at the Proceedings of the XVIth International Conference of Phonetic Sciences.
    Hosokawa, K., Ogawa, M., Hashimoto, M., & Inohara, H. (2014). Statistical analysis of the reliability of acoustic and electroglottographic perturbation parameters for the detection of vocal roughness. Journal of voice, 28(2), 263. e269-263. e216.
    Howard, D. M. (1989). Peak‐picking fundamental period estimation for hearing prostheses. The Journal of the Acoustical Society of America, 86(3), 902-910.
    Howard, D. M., Lindsey, G. A., & Allen, B. (1990). Toward the quantification of vocal efficiency. Journal of voice, 4(3), 205-212.
    Huang, C.-H., Chou, H.-C., Wu, Y.-T., Lee, C.-C., & Liu, Y.-W. (2019). Acoustic Indicators of Deception in Mandarin Daily Conversations Recorded from an Interactive Game. Paper presented at the INTERSPEECH.
    Huang, D. Z., Minifie, F. D., Kasuya, H., & Lin, S. X. (1995). Measures of vocal function during changes in vocal effort level. Journal of voice, 9(4), 429-438.
    Hui, L., Ting, L. H., See, S. L., & Chan, P. Y. (2015). Use of electroglottograph (EGG) to find a relationship between pitch, emotion and personality. Procedia Manufacturing, 3, 1926-1931.
    Kankare, E., Laukkanen, A.-M., Ilomäki, I., Miettinen, A., & Pylkkänen, T. (2012). Electroglottographic contact quotient in different phonation types using different amplitude threshold levels. Logopedics Phoniatrics Vocology, 37(3), 127-132.
    Keating, P. A., Garellek, M., & Kreiman, J. (2015). Acoustic properties of different kinds of creaky voice. Paper presented at the ICPhS.
    Kiliç, M. A., Öğüt, F., Dursun, G., Okur, E., Yildirim, I., & Midilli, R. (2004). The effects of vowels on voice perturbation measures. Journal of voice, 18(3), 318-324.
    Kim, S., Lee, S., & Narayanan, S. (2007). On voicing activity under the control of emotion and loudness. The Journal of the Acoustical Society of America, 122(5), 3019-3019.
    Kimble, C. E., & Seidel, S. D. (1991). Vocal signs of confidence. Journal of nonverbal behavior, 15(2), 99-105.
    Kirchhübel, C., & Howard, D. M. (2013). Detecting suspicious behaviour using speech: Acoustic correlates of deceptive speech–An exploratory investigation. Applied ergonomics, 44(5), 694-702.
    Langleben, D. D., Loughead, J. W., Bilker, W. B., Ruparel, K., Childress, A. R., Busch, S. I., & Gur, R. C. (2005). Telling truth from lie in individual subjects with fast event‐related fMRI. Human brain mapping, 26(4), 262-272.
    Laukkanen, A.-M., Mäki, E., & Leppänen, K. (2009). Electroglottogram-based estimation of vocal economy:‘quasi-output-cost ratio’. Folia Phoniatrica et Logopaedica, 61(6), 316-322.
    Lecluse, F., Brocaar, M., & Verschuure, J. (1975). The electroglottography and its relation to glottal activity. Folia Phoniatrica et Logopaedica, 27(3), 215-224.
    Levitan, S. I., An, G., Ma, M., Levitan, R., Rosenberg, A., & Hirschberg, J. (2016). Combining Acoustic-Prosodic, Lexical, and Phonotactic Features for Automatic Deception Detection. Paper presented at the Interspeech.
    Levitan, S. I., An, G., Wang, M., Mendels, G., Hirschberg, J., Levine, M., & Rosenberg, A. (2015). Cross-cultural production and detection of deception from speech. Paper presented at the Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection.
    Levitan, S. I., Maredia, A., & Hirschberg, J. (2018a). Acoustic-Prosodic Indicators of Deception and Trust in Interview Dialogues. Paper presented at the Interspeech.
    Levitan, S. I., Maredia, A., & Hirschberg, J. (2018b). Linguistic cues to deception and perceived deception in interview dialogues. Paper presented at the Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers).
    Liao, C.-c., & Bresnahan, M. I. (1996). A contrastive pragmatic study on American English and Mandarin refusal strategies. Language Sciences, 18(3-4), 703-727.
    Lin, Y.-T. (2021). Voice Preference in Mandarin: The Effect of Voice Quality and Text Valence. (Master Thesis). National Taiwan Normal University, Taipei. Retrieved from https://hdl.handle.net/11296/4qvvh3
    Linders, B., Massa, G., Boersma, B., & Dejonckere, P. H. (1995). Fundamental voice frequency and jitter in girls and boys measured with electroglottography: influence of age and height. International journal of pediatric otorhinolaryngology, 33(1), 61-65.
    Lu, S., Tsechpenakis, G., Metaxas, D. N., Jensen, M. L., & Kruse, J. (2005). Blob analysis of the head and hands: A method for deception detection. Paper presented at the Proceedings of the 38th Annual Hawaii International Conference on System Sciences.
    Ma, E. P.-M., & Love, A. L. (2010). Electroglottographic evaluation of age and gender effects during sustained phonation and connected speech. Journal of voice, 24(2), 146-152.
    Mehrabian, A. (1971). Nonverbal betrayal of feeling. Journal of Experimental Research in Personality.
    Meijer, E. H., & Verschuere, B. (2017). Deception detection based on neuroimaging: Better than the polygraph? Journal of Forensic Radiology and Imaging, 8, 17-21.
    Mendels, G., Levitan, S. I., Lee, K.-Z., & Hirschberg, J. (2017). Hybrid Acoustic-Lexical Deep Learning Approach for Deception Detection. Paper presented at the Interspeech.
    Meservy, T. O., Jensen, M. L., Kruse, J., Burgoon, J. K., Nunamaker, J. F., Twitchell, D. P., . . . Metaxas, D. N. (2005). Deception detection through automatic, unobtrusive analysis of nonverbal behavior. IEEE Intelligent Systems, 20(5), 36-43.
    Murphy, P. J., & Laukkanen, A.-M. (2010). Analysis of emotional voice using electroglottogram-based temporal measures of vocal fold opening. In Development of Multimodal Interfaces: Active Listening and Synchrony (pp. 286-293): Springer.
    Murry, T., Brown Jr, W., & Rothman, H. (1987). Judgments of voice quality and preference: Acoustic interpretations. Journal of voice, 1(3), 252-257.
    Ni Chasaide, A., & Gobl, C. (1997). Voice source variation. In W. J. H. a. J. Laver (Ed.), The Handbook of Phonetic Sciences. (pp. 427-461). Oxford: Blackwell.
    Ning, L.-H. (2019). The effects of age and pitch level on electroglottographic measures during sustained phonation. The Journal of the Acoustical Society of America, 146(1), 640-648.
    Ning, L.-H., Shih, C., & Loucks, T. M. (2014). Mandarin tone learning in L2 adults: A test of perceptual and sensorimotor contributions. Speech Communication, 63, 55-69.
    Orlikoff, R. F. (1991). Assessment of the dynamics of vocal fold contact from the electroglottogram: data from normal male subjects. Journal of Speech, Language, and Hearing Research, 34(5), 1066-1072.
    Orlikoff, R. F. (1995). Vocal stability and vocal tract configuration: an acoustic and electroglottographic investigation. Journal of voice, 9(2), 173-181.
    Ott, M., Choi, Y., Cardie, C., & Hancock, J. T. (2011). Finding deceptive opinion spam by any stretch of the imagination. arXiv preprint arXiv:1107.4557.
    Pérez-Rosas, V., Abouelenien, M., Mihalcea, R., & Burzo, M. (2015). Deception detection using real-life trial data. Paper presented at the Proceedings of the 2015 ACM on International Conference on Multimodal Interaction.
    Pisanski, K., Jones, B. C., Fink, B., O'Connor, J. J., DeBruine, L. M., Röder, S., & Feinberg, D. R. (2016). Voice parameters predict sex-specific body morphology in men and women. Animal Behaviour, 112, 13-22.
    Roach, P., & Hardcastle, W. (1979). Instrumental measurement of phonation types: A laryngographic contribution. Hollien, Harry and Patricia (eds) Current Issues in Linguistic Theory, 9, 201-207.
    Rockwell, P., Buller, D. B., & Burgoon, J. K. (1997). The voice of deceit: Refining and expanding vocal cues to deception. Communication Research Reports, 14(4), 451-459.
    Sapienza, C. M., Stathopoulos, E. T., & Dromey, C. (1998). Approximations of open quotient and speed quotient from glottal airflow and EGG waveforms: effects of measurement criteria and sound pressure level. Journal of voice, 12(1), 31-43.
    Scherer, K. R. (1978). Personality inference from voice quality: The loud voice of extroversion. European Journal of Social Psychology, 8(4), 467-487.
    Scherer, K. R. (1982). Methods of research on vocal communication: Paradigms and parameters. Handbook of methods in nonverbal behavior research, 136-198.
    Scherer, R. C., Druker, D. G., & Titze, I. R. (1988). Electroglottography and direct measurement of vocal fold contact area. In O. Fujimura (Ed.), Vocal Fold Physiology, Vol. 2: Voice Production, Mechanisms and Functions (pp. 279–290). New York: Raven Press.
    Šebesta, P., Kleisner, K., Tureček, P., Kočnar, T., Akoko, R. M., Třebický, V., & Havlíček, J. (2017). Voices of Africa: acoustic predictors of human male vocal attractiveness. Animal Behaviour, 127, 205-211.
    Soldner, F., Pérez-Rosas, V., & Mihalcea, R. (2019). Box of lies: Multimodal deception detection in dialogues. Paper presented at the Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
    Sondhi, S., Vijay, R., Khan, M., & Salhan, A. K. (2016). Voice analysis for detection of deception. Paper presented at the 2016 11th International Conference on Knowledge, Information and Creativity Support Systems (KICSS).
    Sporer, S. L., & Schwandt, B. (2006). Paraverbal indicators of deception: A meta‐analytic synthesis. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory and Cognition, 20(4), 421-446.
    Stanek, M., & Sigmund, M. (2015). Finding the most uniform changes in vowel polygon caused by psychological stress. Radioengineering, 24(2), 604-609.
    Stigler, J. W., Smith, S., & Mao, L.-w. (1985). The self-perception of competence by Chinese children. Child development, 1259-1270.
    Streeter, L. A., Krauss, R. M., Geller, V., Olson, C., & Apple, W. (1977). Pitch changes during attempted deception. Journal of personality and social psychology, 35(5), 345.
    Suzuki, L. K., Davis, H. M., & Greenfield, P. M. (2008). Self‐enhancement and self‐effacement in reaction to praise and criticism: The case of multiethnic youth. Ethos, 36(1), 78-97.
    Szklanny, K., Gubrynowicz, R., Ratyńska, J., & Chojnacka-Wądołowska, D. (2019). Electroglottographic and acoustic analysis of voice in children with vocal nodules. International journal of pediatric otorhinolaryngology, 122, 82-88. doi:https://doi.org/10.1016/j.ijporl.2019.03.030
    Tan, K. G. O. (2017). Contact quotient of female singers singing four pitches for five vowels in normal and pressed phonations. Journal of voice, 31(5), 645. e615-645. e622.
    Tang, C.-H., & Zhang, G. Q. (2009). A contrastive study of compliment responses among Australian English and Mandarin Chinese speakers. Journal of Pragmatics, 41(2), 325-345.
    Team, R. C. (2021). R: A language and environment for statistical computing.
    Titze, I. R. (1989). Physiologic and acoustic differences between male and female voices. The Journal of the Acoustical Society of America, 85(4), 1699-1707.
    Tsechpenakis, G., Metaxas, D., Adkins, M., Kruse, J., Burgoon, J. K., Jensen, M. L., . . . Nunamaker, J. F. (2005). Hmm-based deception recognition from visual cues. Paper presented at the 2005 IEEE International Conference on Multimedia and Expo.
    Van Borsel, J., Janssens, J., & De Bodt, M. (2009). Breathiness as a feminine voice characteristic: A perceptual approach. Journal of voice, 23(3), 291-294.
    van Mersbergen, M., & Delany, M. (2014). Vocal responses to emotional picture viewing. Logopedics Phoniatrics Vocology, 39(3), 99-107.
    van Mersbergen, M., Lyons, P., & Riegler, D. (2017). Vocal responses in heighted states of arousal. Journal of voice, 31(1), 127. e113-127. e119.
    Vanello, N., Guidi, A., Gentili, C., Werner, S., Bertschy, G., Valenza, G., . . . Scilingo, E. P. (2012). Speech analysis for mood state characterization in bipolar patients. Paper presented at the 2012 annual international conference of the IEEE Engineering in Medicine and Biology Society.
    Venables, W., & Ripley, B. D. (2002). Statistics Complements to Modern Applied Statistics with S Fourth edition by.
    Verdolini, K., Druker, D. G., Palmer, P. M., & Samawi, H. (1998). Laryngeal adduction in resonant voice. Journal of voice, 12(3), 315-327.
    Villafuerte-Gonzalez, R., Valadez-Jimenez, V. M., Sierra-Ramirez, J. A., Ysunza, P. A., Chavarria-Villafuerte, K., & Hernandez-Lopez, X. (2017). Acoustic analysis and electroglottography in elite vocal performers. Journal of voice, 31(3), 391. e391-391. e396.
    Waterman, S. (2009). DHS wants to use human body odor as biometric identifier, clue to deception. United Press International (UPI). http://www. upi. com/Top_News/Special/2009/03/09/DHS-wants-to-use-human-body-odor-as-biometric-identifier-clue-to-deception/UPI-20121236627329, 3(9), 2009.
    Zhang, J., Levitan, S. I., & Hirschberg, J. (2020). Multimodal Deception Detection Using Automatically Extracted Acoustic, Visual, and Lexical Features. Paper presented at the INTERSPEECH.
    Zhou, X., Espy-Wilson, C. Y., Boyce, S., Tiede, M., Holland, C., & Choe, A. (2008). A magnetic resonance imaging-based articulatory and acoustic study of “retroflex” and “bunched” American English/r. The Journal of the Acoustical Society of America, 123(6), 4466-4481.
    Zuckerman, M., DePaulo, B. M., & Rosenthal, R. (1981). Verbal and nonverbal communication of deception. In Advances in experimental social psychology (Vol. 14, pp. 1-59): Elsevier.
    Zuckerman, M., & Driver, R. E. (1985). Telling lies: Verbal and nonverbal correlates of deception. Multichannel integrations of nonverbal behavior, 129-147.

    下載圖示
    QR CODE