簡易檢索 / 詳目顯示

研究生: 周佑霖
CHOU, Yu-Lin
論文名稱: 聚(丙烯酸/丙烯醯胺)/矽灰複合水膠的合成和性質研究
Study on the synthesis and properties of poly(acrylic acid-co-acrylamide)/silica fume composite hydrogel
指導教授: 許貫中
Hsu, Kung-Chung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 95
中文關鍵詞: 陰離子型水膠無機複合型吸水率自養護劑砂漿抗壓強度水化程度
英文關鍵詞: anionic, hydrogel, inorganic composite, water absorbency, self-curing reagent, mortar, compressive strength, the degree of hydration
論文種類: 學術論文
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為製備兩種陰離子型的高吸水性水膠,polyacrylic acid/polyacryl amide ( P(AA/AM) )和polyacrylic acid/polyacryl amide/silica fume (P(AA/AM)/SF),起始劑為ammmonium persulfate (APS ),交聯劑為N,N’methylene bisacrylamide (MBA),使用FT-IR作結構鑑定,樣品表面孔洞透過SEM觀察,影響反應的參數包括:單體比例、起始劑劑量、交聯劑劑量、反應溫度和矽灰比例,接著浸泡到純水和鹽水及各種不同環境中測其吸水率。並測試兩種水膠的機械性質,包含抗壓強度。

    接著評估P(AA/AM)水膠加到水泥漿和水泥砂漿中作為自養護劑時,添加劑量和是否合宜,於水泥漿中探討其水化程度、圓盤裂縫和凝結時間;水泥砂漿中則探討水分重量損失、保水率、抗壓強度、內部濕度和乾縮量。
    實驗結果顯示,在最佳反應條件下,P(AA/AM)/SF水膠在純水中的吸水率為410.5(g/g),0.1M NaCl(aq) 和0.1M CaCl2(aq)的吸水率分別為43.4、24.4 (g/g)。抗壓強度為48.6(Kgf/cm2)。

    將P(AA/AM)水膠加入水泥砂漿中當自養護劑,最佳劑量為0.2(wt%) 和10(wt%)時,對水泥砂漿及水泥漿中的重量損失、抗壓強度,內部濕度、乾縮量和圓盤裂縫與控制組比較均提升效能。

    This main goal of thesis is to prepare two anionic superabsorbent hydrogel, polyacrylic acid / polyacryl amide ( P(AA/AM) ) and polyacrylic acid / polyacryl amide / Silica fume ( P(AA/AM)/SF ). Ammmonium persulfate (APS) and N,N’methylene bisacrylamide (MBA) were used as an initiator and crosslinking agent, respectively. Using FT-IR to identify structure, surface porosity is observed by SEM. The parameters what could be effected experiment are monomer ratio, initiator dosage, crosslinker dosage, reaction temperature and proportion of silica fume. We measure water absorbency of hydrogel in water, saline solution and variety of different situation and then test the mechanical properties, including compressive strength .
    We evaluate if P(AA/AM) hydrogel whose additive quantity is reasonablely applied to the grout and cement mortar as a self-curing agent. Then we researched hydration degree, cracking index, and setting time in grout. We calculated weight-loss, water retention,compressive strength, internal humidity, and drying shrinkage in cement mortar.
    The result indicate that P(AA/AM)SF hydrogel in the optimum reaction condition, the water absorbency is 410.5 g/g in water, and 40.4, 24.4 g/g in 0.1M NaCl(aq) and 0.1M CaCl2(aq),repectively. The compressive strength is 48.6 (Kgf / cm2).
    When we add P(AA/AM) hydrogel into mortar as self-curing reagent, the optimum dosage is 0.2 wt% , respectively, in this condition, improve the performance of weight-loss, compressive strength, internal humidity, drying shrinkage and craking formation. All the performance is better than the control group without P(AA/AM) hydrogel.

    摘要 i Abstract iii 目錄 v 圖目錄 x 表目錄 xiii 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 1-3研究內容 3 第二章 文獻回顧 4 2-1水膠簡介 4 2-2 影響水膠膨潤之作用力 5 2-2-1交聯密度 5 2-2-2 親水基對水的親和力比較 6 2-2-3 離子強度 6 2-2-4 鹽水溶液的影響 7 2-2-5水溶液之 pH 值 8 2-3水膠的種類 9 2-4有機/無機複合型水膠簡介 10 2-5 水泥 12 2-5-1 波特蘭水泥之組成 12 2-5-2 水泥之水化反應 12 2-6矽灰簡介 15 2-7混凝土收縮變形 16 2-7-1乾燥收縮(Drying Shrinkage) 16 2-7-2自體收縮(autogenous shrinkage) 16 2-7-3塑性收縮(plastic shrinkage) 16 2-8 水膠作為自養護劑的應用 17 第三章 水膠之合成與實驗流程 19 3-1 實驗流程 19 3-2 實驗材料與實驗設備 20 3-2-1 藥品 20 3-2-2 實驗儀器 22 3-3 實驗方法 23 3-3-1 P(AA/AM)之合成 23 3-3-2 P(AA/AM)/SF之合成 25 3-4 聚合物結構分析與鑑定 27 3-4-1 紅外光(IR)光譜分析 27 3-4-2 核磁共振 (1H-NMR) 光譜分析 28 3-4-3 電子顯微鏡 (JSM-6510) 表面結構 28 3-4-4 水膠吸水率之測量 29 3-4-5 水膠在不同pH值下吸水率 29 3-4-6 水膠在不同溫度下的吸水率 29 3-4-7 水膠在鹽水溶液吸水率 29 3-4-8 水膠在拌合水中的吸水率 30 3-4-9 水膠在Pore Solution中的吸水率 30 3-4-10 水膠抗壓強度之測量 30 3-5 添加水膠的水泥漿之性質分析 32 3-5-1 水泥漿試體之拌製 32 3-5-2 水泥漿凝結時間測試 33 3-5-3 水泥漿圓盤裂縫測試 33 3-5-4 粉末X-ray繞射分析儀(XRD) 34 3-6 添加水膠的水泥砂漿之性質分析 35 3-6-1 水泥砂漿試體之拌製 35 3-6-2 水泥砂漿試體重量損失量之測量 36 3-6-3水泥砂漿體內部濕度之測量 37 3-6-5 水泥砂漿試體抗壓強度之測量 37 3-6-6 水泥砂漿乾燥收縮之測量 38 第四章 結果與討論 40 4-1 聚合物之結構鑑定 40 4-1-1 單體1H NMR光譜 40 4-1-2 P(AA/AM) 1H光譜 40 4-1-3 單體紅外光光譜 40 4-1-4聚合物紅外光光譜 41 4-1-5 水膠表面形態鑑定 46 4-2 反應條件對P(AA/AM)水膠吸水率之影響 50 4-2-1 單體比例對P(AA/AM)水膠吸水率之影響 50 4-2-2起始劑劑量對P(AA/AM)水膠吸水率之影響 51 4-2-3交聯劑劑量對P(AA/AM)水膠吸水率之影響 53 4-2-4 反應溫度對P(AA/AM)水膠吸水率之影響 54 4-3 SF含量對P(AA/AM)/SF水膠吸水率之影響 55 4-4 水溶液環境對P(AA/AM)/SF水膠吸水率的影響 58 4-4-1鹽水溶液濃度對水膠吸水率之影響 58 4-4-2 pH值對水膠吸水率之影響 61 4-4-3 水膠在pore solution中的吸水率 62 4-5 矽灰含量對水膠抗壓強度的影響 66 4-6 P(AA/AM)水膠對水泥砂漿性質的影響 67 4-6-1水膠劑量對水泥砂漿重量損失的影響 67 4-6-2水膠劑量對水泥砂漿內部濕度的影響 70 4-6-3水膠劑量對水泥砂漿抗壓強度的影響 72 4-6-4水膠劑量對水泥砂漿乾縮量的影響 75 4-7 P(AA/AM)水膠對水泥漿性質的影響 77 4-7-1 水膠劑量對水泥漿凝結時間的影響 77 4-7-2 XRD分析 78 4-7-3 水膠劑量對水泥漿圓盤裂縫的影響 82 第五章 結論 85 第六章 參考文獻 87

    1. Mahmoud Baniasadi and Majid Minary-Jolandan, Alginate-Collagen Fibril Composite Hydrogel, Materials 2015, 8, 799-814.
    2. Francisco H. A. Rodrigues, Antonio G. B. Pereira, Andr e R. Fajardo, Edvani C. Muniz, Synthesis and Characterization of Chitosan-graft-Poly(acrylic acid)/Nontronite Hydrogel Composites Based on a Design of Experiments, J. APPL. POLYM. SCI. 2013, 128: 3480–3489.
    3. Hoffman, A.S., Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 2002. 54(1): p. 3-12.
    4. Reddy, T.T. and A. Takahara, Simultaneous and sequential micro-porous semi-interpenetrating polymer network hydrogel films for drug delivery and wound dressing applications. Polymer, 2009. 50(15): p. 3537-3546.
    5. Chirila, T., An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Biomaterials, 2001. 22(24): p. 3311-3317.
    6. Jensen, O.M. and P.F. Hansen, Water-entrained cement-based materials II. Experimental observations. Cement and Concrete Research, 2002. 32(6): p. 973-978.
    7. Jensen, O.M. and P.F. Hansen, Water-entrained cement-based materials I. Principles and theoretical background, Cement and Concrete Research, 31 (2001) , 647-654.
    8. Eichenbaum, G., et al., Investigation of the swelling response and drug loading of ionic microgels: The dependence on functional group composition. Macromolecules, 1999. 32(26): p. 8996-9006.
    9. Chen, X.P., et al., Synthesis and properties of acrylic-based superabsorbent. Journal of Applied Polymer Science, 2004. 92(1): p. 619-624.
    10. P.S.K. Murthy, Y.M. Mohan, J. Sreeramulu, and K.M. Raju, Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): Preparation, swelling and diffusion characteristics evaluation, Reactive & Functional Polymers, 66 (2006), 1482–1493.
    11. P. J. Flory, Principle of Polymer Chemistry, (1953)
    12. Baker, J., H. Blanch, and J. Prausnitz, Swelling properties of acrylamide-based ampholytic hydrogels: Comparison of experiment with theory. POLYMER-LONDON-, 1995. 36: p. 1061-1061.
    13. Y. Zheng, P. Li, J. Zhang, and A. Wang, Study on superabsorbent composite XVI.Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites, European Polymer Journal, 43 (2007), 1691–1698.
    14. A. Pourjavadi, A.M. Harzandi, and H. Hosseinzadeh, Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air, European Polymer Journal 40 (2004), 1363–1370.
    15. A. Pourjavadi, and H. Salimi, New Protein-Based Hydrogel with Superabsorbing Properties: Effect of Monomer Ratio on Swelling Behavior and Kinetics, Ind. Eng. Chem. Res, 47 (2008), 9206–9213.
    16. Y. Zhao, J. Kang, and T. Tan, Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid), Polymer 47 (2006) 7702-7710.
    17. Xu, S., et al., Salt and pH responsive property of a starch-based amphoteric superabsorbent hydrogel with quaternary ammonium and carboxyl groups (II). Journal of Applied Polymer Science, 2006. 101(3): p. 1995-1999.
    18. Xiao, C. and N. Geng, Tailored preparation of dual phase concomitant methylcellulose/poly(vinyl alcohol) physical hydrogel with tunable thermosensivity. European Polymer Journal, 2009. 45(4): p. 1086-1091.
    19. Chang, C., et al., Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European Polymer Journal, 2009. 46(1): p. 92-100.
    20. Wang, W. and A. Wang, Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydrate Polymers, 2010. 80(4): p. 1028-1036.
    21. Hua, F. and M. Qian, Synthesis of self-crosslinking sodium polyacrylate hydrogel and water-absorbing mechanism. Journal of Materials Science, 2001. 36(3): p. 731-738.
    22. Marandi, G., et al., pH sensitivity and swelling behavior of partially hydrolyzed formaldehyde-crosslinked poly (acrylamide) superabsorbent hydrogels. Journal of Applied Polymer Science, 2008. 109(2): p. 1083-1092.
    23. Jin, S.P., et al., Synthesis and characterization of pH-sensitivity semi-IPN hydrogel based on hydrogen bond between poly(N-vinylpyrrolidone) and poly(acrylic acid). Polymer, 2006. 47(5): p. 1526-1532.
    24. Li, A., J. Zhang, and A. Wang, Synthesis, characterization and water absorbency properties of poly (acrylic acid)/sodium humate superabsorbent composite. Polymers for Advanced Technologies, 2005. 16(9): p. 675-680.
    25. Wei, J., et al., Synthesis and characteristics of an amphoteric semi-IPN hydrogel composed of acrylic acid and poly(diallydimethylammonium chloride). Journal of Applied Polymer Science, 2007. 103(1): p. 345-350.
    26. Lee, W.F. and C.F. Chen, Poly(2-hydroxyethyl methacrylate-co-sulfobetaine) hydrogels. II. Synthesis and swelling behaviors of the [2-hydroxyethyl methacrylate-co-3-dimethyl(methacryloyloxyethyl)ammonium propane sulfonate] hydrogels. Journal of Applied Polymer Science, 1998. 69(10): p. 2021-2034.
    27. Zhang, J.P., et al., Preparation, swelling behaviors and application of polyacrylamide/attapulgite superabsorbent composites. Polymers for Advanced Technologies, 2006. 17(1): p. 12-19.
    28. Li, A. and A. Wang, Synthesis and properties of clay-based superabsorbent composite. European Polymer Journal, 2005. 41(7): p. 1630-1637.
    29. Zheng, L., et al., Preparation and swelling behavior of amphoteric superabsorbent composite with semi-IPN composed of poly(acrylic acid)/Ca-bentonite/poly(dimethyldiallylammonium chloride). Polymers for Advanced Technologies, 2007. 18(3): p. 194-199.
    30. P. Judeinstein, C. Sanchez, Journal of Materials Chemistry 1996, 6, 511-525.
    31. Yan Baoa, Jianzhong Maa, Na Li, Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydrate Polymers,84 (2011), 76-82.
    32. S.R. Shirsath , A.P. Patil , B.A. Bhanvase , S.H. Sonawane, Ultrasonically prepared poly(acrylamide)-kaolin composite hydrogel
    for removal of crystal violet dye from wastewater. Journal of Environmental Chemical Engineering , 3 (2015), 1152-1162.
    33. Tao Wan , Lei Xiong, Runqiu Huang, Mengmeng Sun, Lili Qin, Xuemei Tan, Junyan Hu, Properties and structure of microcrystal muscovite composite superabsorbent. Journal of Wuhan University of Technology-Mater. Sci. Ed.29 (2014), 1302-1306.
    34. Seung-Taek Oh, Woo-Ram Kim, Sung-Hoon Kim, Yong-Chan Chung, and Jong-Shin Park, The Preparation of Polyurethane Foam Combined with pH-sensitive Alginate/Bentonite Hydrogel for Wound Dressings. Fibers and Polymers.12 (2011),159-165.
    35. Mahmoud Baniasadi and Majid Minary-Jolandan, Alginate-Collagen Fibril Composite Hydrogel, Materials 2015, 8, 799-814.
    36. Francisco H. A. Rodrigues, Antonio G. B. Pereira, Andr e R. Fajardo, Edvani C. Muniz, Synthesis and Characterization of Chitosan-graft-Poly(acrylic acid)/Nontronite Hydrogel Composites Based on a Design of Experiments, J. APPL. POLYM. SCI. 2013, 128: 3480–3489.
    37. Peng Liu, Liping Jiang, Longxiang Zhu, Jinshan Guo , Aiqin Wang, Synthesis of covalently crosslinked attapulgite/poly(acrylic acid-co-acrylamide) nanocomposite hydrogels and their evaluation as adsorbent for heavy metal ions, Journal of Industrial and Engineering Chemistry, 23 (2015) 188–193.
    38. 楊思廉, 工業化學概論, 高立 (1992).
    39. C. Jolicoeur and M. A. Simard, Chemical admixture-cement interactions: Phenomenology and physico-chemical concepts, Cem. Concr. Composites 20 (1998), 87–101.
    40. ELKEM Materials, ELKEM Microsilica For Superior Concrete,
    1989.
    41. V.M. Malhotra, V.S. Remachandran, R.F. Feldman and P.C.
    Aitcin, Condensed Silica Fume in Concrete, CRC Press Inc. Boca Ration, Florida, pp.46, chapter 9 (1987).
    42. A. Goldman and A. Bentur, Bond Effect in High-Strength
    Silica-Fume Concrete, ACI Material Journal, Vol.86, No.5, pp. 440-447, 1989.
    43. W.T. Lin, R. Huang, C.L. Lee, H.M. Hsu, Effect of Steel Fiber on
    the Mechanical Properties of Cement-based Composites Containing Silica Fume, Journal of Marine Science and Technology, Vol. 16, No. 3, 2008, pp. 214-221.
    44.T.J. Zhao, Z.H. Zhou, N.Q. Feng, An Alternating Test Method of
    Concrete Permeability, Cement and Concrete Research, Vol.28, No.1, pp.77-12, 1998.
    45. M.G. Alexander and B.J. Magee, Durability Performance of
    Concrete Containing Condensed Silica Fume, Cement and Concrete Research, Vol.29, No.6, pp.917-922, 1999.
    46. Lura, P., O.M. Jensen, and K. van Breugel, Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cement and Concrete Research, 2003. 33(2): p. 223-232.
    47. Kovler, K. and S. Zhutovsky, Overview and future trends of shrinkage research. Materials and Structures, 2006. 39(9): p. 827-847.
    48. Holt, E., Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages. Cement and Concrete Research, 2005. 35(3): p. 464-472.
    49. Jensen, O.M. and P. Lura, Techniques and materials for internal water curing of concrete. Materials and Structures, 2006. 39(9): p. 817-825.
    50.Henkensiefken, R., et al., Volume change and cracking in internally cured mixtures made with saturated lightweight aggregate under sealed and unsealed conditions. Cement and Concrete Composites, 2009. 31(7): p. 427-437.
    51. Rha, C., et al., Preparation and characterization of absorbent polymer-cement composites. Cement and Concrete Research, 1999. 29(2): p. 231-236.
    52. Xu, S., et al., Effect of the anionic-group/cationic-group ratio on the swelling behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly (acrylic acid-co-diallyldimethylammonium chloride). Journal of Applied Polymer Science, 2006. 102(2): p. 986-991.
    53. Mateusz Wyrzykowski , Pietro Lura, Controlling the coefficient of thermal expansion of cementitious materials – A new application for superabsorbent polymers, Cement & Concrete Composites .35, (2013), 49–58.
    54. H. Beushausen , M. Gillmer, The use of superabsorbent polymers to reduce cracking of bonded mortar overlays, Cement & Concrete Composites. 52, (2014), 1–8.
    55. H. Beushausen, M. Gillmer, M. Alexander, The influence of superabsorbent polymers on strength and durability properties of blended cement mortars. Cement & Concrete Composites, 2014, 10.
    56. A. Assmann, H.W. Reinhardt, Tensile creep and shrinkage of SAP modified concrete. Cement and Concrete Research, 58, 2014, 179–185.
    57. Mohammad J, Zohuriaan-Mehr and Kourosh Kabiri, Superabsorbent Polymer Materials: A Review. Iranian Polymer Journal, 17(6), 2008, 451-477.
    58. A. Li, J. Zhang and A. Wang, Synthesis, characterization and water absorbency properties of poly(acrylic acid)/sodium humate superabsorbent composite, Polym. Adv. Technol. 16 (2005), 675–680.
    59. Bjontegaard, O., T. Hammer, and E. Sellevold. Cracking in high performance concrete before setting. 1998.
    60. Z. C. Grasley and D. A. Lange, Thermal dilation and internal relative humidity of hardened cement paste, Materials and Structures, 40 (2007), 311–317.
    61.Wenbo Wang,Yuru Kang and Aiqin Wang,Synthesis,characterization and swelling properties of guar gum-g-poly(sodium acrylate-co-styrene)/muscovite superabsorbent composites.Science and Technology of Advanced Materials,11(2010) .
    62. Lee, W.-F. and G.-H. Lin, Superabsorbent polymeric materials VIII: Swelling behavior of crosslinked poly[sodium acrylate-co-trimethyl methacryloyloxyethyl ammonium iodide] in aqueous salt solutions. Journal of Applied Polymer Science, 2001. 79(9): p. 1665-1674.
    63. 詹炳根, 丁以兵, 超強吸水劑對混凝土早期內部相對濕度的影響,合肥工業大學學報, 2006. 29(9): p. 1151-1155.
    64. 葉華, 趙建青, 張宇, 吸水樹脂水泥基材料自養護外加劑的研究,華南理工大學學報, 2003. 31(11): p. 41-44.
    65. Mishra, P. C. Singh, V. K. Narang, K. K., and Singh, N.K.. Effect of carboxymethyl-cellulose on the properties ofcement. Materials and Engineering, A 357 (2003), 13–19.
    66. Zhihong, W. Yucuia, H., and Yuan, H.. Research on increasing effect of solution polymerization for cement-based composite. Cement and Concrete Research, 33 (2003), 1655–1658.

    無法下載圖示 本全文未授權公開
    QR CODE