簡易檢索 / 詳目顯示

研究生: 段蓓文
Tuan Pei-Wen
論文名稱: 對掌輔助劑衍生物之非對稱氮丙啶合成探討
指導教授: 陳焜銘
Chen, Kwun-Min
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 246
中文關鍵詞: 氮丙啶對掌輔助劑樟腦
英文關鍵詞: aziridine, chiral, camphor
論文種類: 學術論文
相關次數: 點閱:501下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗室開發以樟腦為架構新的對掌輔助劑(288與290),接上α,β-不飽和醯氯後,生成不同取代基之α,β-不飽和酯類(291-301, 303-304)。以四價醋酸鉛氧化N-Aminophthalimide後與不同取代基之α,β-不飽和酯類(291-301, 303-304)進行氮丙啶化反應,均可迅速得到高產率(80-95%)的氮丙啶產物(305-315, 316-317)與理想的非鏡像超越值。
    在起始物α,β-不飽和酯類的空間構形部分,研究其X-ray ORTEP結果,除了β-位置雙甲基取代的α,β-不飽和酯類(309)之羰基與烯基呈s-cis的構形外,其他不同取代基的α,β-不飽和酯類之晶體構形均為s-trans。當β-位置的取代基立體障礙愈大時,進行氮丙啶化反應得到的非鏡像超越值愈高,產物會傾向單一的構形。由產物的X-ray ORTEP的結果分析,推測對掌輔助劑控制了被攻擊的位向;四價醋酸鉛氧化N-Aminophthalimide之後得到的產物,由於樟腦架構雙甲基立體障礙大,故從其反方向打入。而在α,β-不飽和酯類(291-301, 303-304)上,立體障礙大的取代基不僅在立體選擇性控制上有貢獻,更進一步地使三員環中氮原子之氮翻轉運動不易進行,可得到單一化合物的純光譜。
    除了取代基效應外,溫度及溶劑效應也被探討。由實驗結果發現,不同的溶劑對產率的影響很大。對掌輔助劑(288)之α,β-不飽和酯類衍生物在以四氫呋喃為溶劑、溫度為0 ℃之條件下,可得到最佳的產率及非鏡像選擇性。
    另外,使用不同的對掌輔助劑(288與290)對反應性及選擇性都有不同的影響,這方面可以進一步再做比較。
    在對掌輔助劑之回收部分,於室溫下,使用甲醇鈉為試劑,以甲醇為溶劑,反應三小時,可回收對掌輔助劑產率達85%,並得到具酯基取代的氮丙啶322(產率67%),測得其旋光度[α]D = + 109.5o(c=1, CHCl3)。

    Aziridine is an important building block found in many nature products. The preparation of enantiomerically pure compounds is one of the major areas in organic chemistry. The synthesis of aziridines and their derivaties has attracted a lot of attention in recent years, owing to their versatile roles in organic synthesis.
    A new chiral auxiliary was prepared to react with acyl chloride(302), and get α,β-unsaturated carbonyl substrates(291-301)of exo-10,10-diphenyl-2,10- camphanediol(288). The formation of aziridines was carried out by reactions of various chiral auxiliary derivatiesα,β-unsaturated olefins with N-aminophthalimide in the presence of lead tetracetate. These reactions was performed in tetrahydrofuran(THF)at 0 ℃ for 5-15 min, and the products were obtained in good yield(80-95%) and good diastereoselectivity(>90% de). All structures are determined by 1H NMR, 13C NMR, HRMS, element analysis, and X-ray ORTEP.
    The effects of solvent, temperature, and different substrates of chiral olefins were investigated, THF was found to be the best choice of solvent because of the reactivity. The more hindered the substrate is, the higher diastereoselectivity is generated.
    The chiral auxiliary was removed by using sodium methoxide in methanol at room temperature with a recovered yield 85%.

    第一章 緒論……………………………………1 1.1 前言……………………………………………1 1.2 氮丙啶之合成……………………………………2 1.2.1 親核性試劑與親電子性試劑的分子間反應……3 1.2.2 分子間環化反應……………………………………5 1.2.3 分子內親核性與親電子性位置的反應……………8 1.2.4 分子內電子流動成環反應…………………………10 1.2.5 高反應性的中間體成環反應………………………11 1.2.6 從既有的環做修飾得到氮丙啶……………………12 1.3 氮丙啶的反應類型……………………………………14 1.3.1 擴環反應……………………………………………14 1.3.2 偶極環化加成反應…………………………………15 1.3.3 開環反應……………………………………………16 1.3.4 重排反應……………………………………………18 1.4 氮丙啶在有機合成之應用…………………………18 1.4.1 合成生物鹼類天然物………………………………19 1.4.2 合成胺基醣類………………………………………20 1.4.3 合成胺基酸及其衍生物……………………………20 1.4.4 合成β-內醯胺………………………………………21 1.4.5 非對稱合成之立體輔助劑…………………………23 1.4.6 鏡像催化反應之對掌螯合劑………………………23 第二章非對稱氮丙啶合成之探討…………………………25 2.1 前言……………………………………………………25 2.1.1 對掌氮丙啶的製備…………………………………25 2.1.2 非對掌氮丙啶的製備………………………………34 2.2 研究動機………………………………………………45 2.3 結果與討論……………………………………………46 2.3.1 對掌輔助劑的製備…………………………………46 2.3.2 對掌α,β-不飽和酯類的製備………………………48 2.3.3 對掌α,β-不飽和酯類之非鏡像氮丙啶化反應……50 2.3.4 對掌輔助劑之回收…………………………………61 2.4 結論…………………………………………………62 第三章 實驗部分…………………………………………63 3.1 分析儀器及基本實驗操作……………………………63 3.2 實驗部分及光譜數據…………………………………65 第四章 參考文獻…………………………………………89 附錄1. X-ray 單晶繞射結構解析與數據………………93 附錄2. 1H 及 13C-NMR 圖譜……………………………200

    第四章 參考文獻
    1. Gabriel, S. Ber. Dtsch. Chem. Ges. 1888, 21, 1409.
    2. Akhtar, M. H.; Begleiter, A.; Johnson, D.; Lown, J. W.; Mcloughlin, L.; Sim, S.-K. Can. J. Chem, 1975, 53, 2891.
    3. Fukuyama, T.; Nakatsubo, F.; Cocuzza, A. J.; Kishi, Y. Tetrahedron Lett. 1977, 4295.
    4. Fukuyama, T.; Xu, L.; Goto, S. J. Am. Chem. Soc. 1992, 114, 383.
    5. Coleman, R. S.; Carpenter, A. J. J. Org. Chem. 1990, 55, 1144.
    6. Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599.
    7. Pearson, W. H.; Lain, B.W.; Bergmeier, S. C. In Comprehensive Hetereocyclic Chemistry II; Padwa, A., Ed.; Pergamon Press: New York, 1996, Vol. 1A, pp 1-60.
    8. Rai, K. M. L.; Hassner, A. In Comprehensive Hetereocyclic Chemistry II; Padwa, A., Ed.; Pergamon Press: New York, 1996, Vol. 1A, pp 61-96.
    9. Fujisawa, T.; Hayakawa, R.; Shimizu, M. Tetrahedron Lett. 1992, 33, 7903.
    10. Evans, D. A.; Woerpel, K. A.; Hinman, M. M.; Faul, M. M. J. Am. Chem. Soc. 1991, 113, 726.
    11. Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1993, 115, 5326.
    12. Subbaraj, A.; Rao, O. S.; Lwowski, W. J. Org. Chem. 1989, 54, 3945.
    13. Vedejs, E.; Sano, H. Tetrahedron Lett. 1992, 33, 3261.
    14. Yeheskiely, E. K.; Lodder, M.; Marel, G. A.; Boom, J. H. Tetrahedron Lett. 1992, 33, 3013.
    15. Bergmeier, S. C.; Lee, W. K.; Rapoport, H. J. Org. Chem. 1993, 58, 5019.
    16. Tanner, D.; Birgersson, C. Tetrahedron Lett. 1991, 32, 2533.
    17. Chan, M. F.; Hsiao, C. N. Tetrahedron Lett. 1992, 33, 3567.
    18. Gao, Y.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 7538.
    19. Lohray, B. B.; Gao, Y.; Sharpless, K. B. Tetrahedron Lett. 1989, 30, 2623.
    20. Moulines, J.; Charpentier, P.; Bats, J. P.; Nuhrich, A.; Lamidey, A. M. Tetrahedron Lett. 1992, 33, 487.
    21. Vedejs, E.; Dax, S.; Martinez, G. R.; McClure, C. K. J. Org. Chem. 1987, 52, 3470.
    22. Rao, M. N.; Holkar, A. G.; Ayyangar, N. R. Tetrahedron Lett. 1989, 30, 4717.
    23. Hassner, A.; Fowler, F. W. J. Org. Chem. 1968, 33, 2686.
    24. Aube, J.; Peng, X.; Wang, Y.; Takusagawa, F. J. Am. Chem. Soc. 1992, 114, 5466.
    25. Pearson, W. H.; Bergmeier, S. C.; Lin, S. D.; Poon, Y. F.; Schkeryantz, J. M.; Williams, J. P. J. Org. Chem. 1990, 55, 5719.
    26. Kim, N. S.; Kang, C. H.; Cha, J. K. Tetrahedron Lett. 1994, 35, 3489.
    27. Smith, R. H.; Thompson, E. J.; Michejda, C. J. J. Org. Chem. 1993, 58, 2097.
    28. Alper, H.; Urso, F.; Smith, D. H. J. Am. Chem. Soc. 1983, 105, 6737.
    29. Chamchaang, W.; Pinhas, A. R. J. Org. Chem. 1990, 55, 2943.
    30. Loeppky, R. N.; Feng, O.; Srinivasan, A.; Glaser, R.; Barnes, C. L.; Sharp, P. R. J. Am. Chem. Soc. 1991, 113, 2308.
    31. Padwa, A.; Ku, H. J. Org. Chem. 1979, 44, 255.
    32. Clennan, E. L.; Koola, J. J.; Oolman, K. A. Tetrahedron Lett. 1990, 31, 6739.
    33. Tanner, D.; Birgersson, C.; Dhaliwal, H. K. Tetrahedron Lett. 1990, 31, 1903.
    Tetrahedron Lett. 1991, 32, 1417.
    J. Chem. Soc. Perkin Trans. 1, 1983, 2277.
    J. Chem. Soc. Chem. Commun. 1987, 153.43. Tanner, D.; Somfai, P.; Harden, A.
    44. Helne, M.; Osborn, I.; Sweeney, J. Tetrahedron:Asymmetry 1997, 8, 1693.
    45. Nakajima, K.; Takai, F.; Tanaka, T.; Okawa, K. Bull. Chem. Soc. Jpn. 1978, 51, 1577.
    46. Daub, G. W.; Heerding, D. A.; Overman, L. E. Tetrahedron 1988, 44, 3919.
    47. Bois, J. D.; Guthikonda, K. J. Am. Chem. Soc. 2002, 124, 13672.
    48. Sudalai, A.; Nikalje, M. D.; Ali, S. I. Org. Lett. 1999, 1, 705.
    49. Aggarwal, V. K.; Thompson, A.; Jones, R. V. H.; Standen, M. C. H. J. Org. Chem. 1996, 61, 8368.
    50. Dodd, R. H.; Dauban, P. Tetrahedron Lett. 1998, 39, 5739.
    51. Scott, P.; Gillespie, K. M.; Sanders, C. J. J. Org. Chem. 2002, 67, 3450.
    52. Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am. Chem. Soc. 1994, 116, 2742.
    53. Jacobsen, E. N.; Li, Z.; Conser, K. R. J. Am. Chem. Soc. 1993, 115, 5326.
    54. Wulff, W. D.; Loncaric, C. Org. Lett. 2001, 3. 3675.
    55. Yang, K. S.; Chen, K. Org. Lett. 2002, 4, 1107.
    56. Komatsu, M.; Minakata, S.; Nishimura, M.; Takahashi, T.; Oderaotoshi, Y. J. Org. Chem. 2002, 67, 2101.
    57. Jorgensen, K. A.; Juhl, K.; Hazell, R. G. J. Chem. Soc. Perkin Trans. 1, 1999, 2293.
    58. Hossain, M. M.; Mayer, M. F. J. Org. Chem. 1998, 63, 6839.
    59. Hou, X. L.; Yang, X. F.; Zhang, M. J.; Dai, L. X. J. Org. Chem. 2002, 67, 8097.
    60. Shapless, K. B.; Jeong, J. U.; Tao, B.; Sagasser, I. Henniges, H. J. Am. Chem. Soc. 1998, 120, 6844.
    61. .Caine, D.; O’Brien, P.; Rosser, C. M. Org. Lett. 2002, 4, 1923.
    62. Tardella, P. A.; Fioravanti, S.; Pellacani, L.; Morreale, A. J. Org. Chem. 2002, 67, 4972.
    63. Katsuki, H.; Arimura, K.; Ohishi, T.; Maruzasa, R. J. Org. Chem. 1999, 64, 3770.
    64. Atkinson, R. S.; Barker, E.; Ulukanli, S. J. Chem. Soc., Perkin Trans. 1, 1998, 583.
    65. Chilmonczyk, Z.; Egli, M.; Behringer, C.; Dreiding, A. S. Helv. Chim. Acta 1989, 72, 1095.
    66. Cardillo, G.; Gentilucci, L.; Bastardas, I. R.; Tolomelli, A. Tetrahedron 1998, 54, 8217.
    67. Carducci, M.; Eioravanti, S.; Loreto, M. A.; Pellacani, L.; Tardella, P. A. Tetrahedron Lett. 1996, 37, 3777.
    68. Garner, P.; Dogan, O.; Pillai, S. Tetrahedron Lett. 1994, 35, 1653.
    69. Filigheddu, S. N.; Taddei, M. Tetrahedron Lett. 1998, 39, 3857.
    70. McLaren, A. B.; Sweeney, J. B. Org. Lett. 1999, 1, 1339.
    71. Filigheddu, S. N.; Taddei, M. Tetrahedron Lett. 1998, 39, 3857.
    72. Kapron, J. T.; Santarsiero, B. D.; Vederas, J. C. J. Chem. Soc. Chem. Commun. 1993, 1074.
    73. Concellon, J. M.; Bernad, P. L.; Riego, E. J. Org. Chem. 2001, 66, 2764.
    74. Yang, K. S.; Chen, K. J. Org. Chem. 2001, 66, 1676.

    無法下載圖示
    QR CODE