研究生: |
黃敏慧 HUANG,Min-Hui |
---|---|
論文名稱: |
設計銀奈米晶片用於螢光增強的高靈敏度砷(III)離子檢測 Fabrication of plasmonic silver chips for fluorescence-based highly sensitive Arsenic (III) detection |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 奈米島狀薄膜 、金屬螢光增強 、水中砷(III)離子檢測 |
英文關鍵詞: | nano island film, metal fluorescence enhancement, detection of Arsenic(III) in water |
DOI URL: | http://doi.org/10.6345/NTNU201900451 |
論文種類: | 學術論文 |
相關次數: | 點閱:119 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗是利用無電電鍍法製備銀奈米島狀薄膜(Silver-Island Films,SIFs),以液相二次生長法,並用奈米金作為金種,硝酸銀(silver nitrate)為前驅物,葡萄糖(D-Glucose)作為還原劑生長銀奈米島狀薄膜。由於奈米銀薄膜材料會有局部表面電漿共振(Localized surface plasmon resonance,LSPR)效應,導致此材料具有螢光增強的性質,利用此性質應用在砷的檢測上。因為砷(III)離子與羧基鍵結良好,因此選定Polyacrylic acid帶有羧基的聚合物做為連接砷(III)離子與奈米晶片的橋樑,並且使用濃度1x10-5 mg/mL Cyanine7.5 carboxylic acid染劑、37.5°C恆溫環境下固定90分鐘的反應時間及pH=12的條件,為了確定對於砷(III)離子有良好的選擇性,同時也對其他離子做同樣的測試,包含鉛(II)離子、鉻(II)離子、鎘(II)離子、鋅(II)離子、鎂(II)離子、鐵(II)離子、銅(II)離子、鈣(II)離子。最後成功地找到了擁有高靈敏性及良好選擇性的條件,為砷(III)離子的檢測器開創更便捷的可能性。
In this experiment, silver-Island Films (SIFs) were prepared by electroless plating. We use liquid secondary growth method, nano gold as a gold species and silver nitrate as a precursor. D-Glucose was used as a reducing agent to grow a silver nano island-like film. Because the nano-silver film material has a localized surface plasmon resonance (LSPR) effect, This material has a fluorescence enhanced property and is utilized in the detection of arsenic. Because the arsenic (III) ion is well bonded to the carboxyl group, the polymer with a carboxyl group selected from Polyacrylic acid is used as a bridge between the arsenic (III) ion and the nano wafer, and the concentration is 1x10-5 mg/mL Cyanine7.5 carboxylic. Acid dye, reaction time fixed at 90 °C for 3 minutes at a constant temperature of 37.5 °C, and pH=12. In order to determine the good selectivity for arsenic (III) ions, and also do the same test for other ions, including lead (II) ions, chromium (II) ions, cadmium (II) ions, zinc (II) ions, magnesium (II) Ions, iron (II) ions, copper (II) ions, calcium (II) ions. Finally, the conditions of high sensitivity and good selectivity were successfully found, creating a more convenient possibility for the detector of arsenic (III) ions.
1. 牟中原、陳家俊,科學發展2000,28(4),281-288.
2. Jeevanandam, J.; Barhoum, A.; Chan, Y. S.; Dufresne, A.; Danquah, M. K., Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 2018, 9, 1050-1074.
3. Szunerits, S.; Spadavecchia, J.; Boukherroub, R., Surface plasmon resonance: signal amplification using colloidal gold nanoparticles for enhanced sensitivity. Reviews in Analytical Chemistry 2014, 33 (3).
4. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 2007, 58, 267-97.
5. Haes, A. J.; Van Duyne, R. P., A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. Journal of the American Chemical Society 2002, 124 (35), 10596-10604.
6. Darvill, D.; Centeno, A.; Xie, F., Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology. Phys Chem Chem Phys 2013, 15 (38), 15709-26.
7. Zhang, Y.; Aslan, K.; Previte, M. J.; Geddes, C. D., Low temperature metal-enhanced fluorescence. J Fluoresc 2007, 17 (6), 627-31.
8. Zhang, Y.; Aslan, K.; Previte, M. J. R.; Geddes, C. D., Metal-enhanced fluorescence from copper substrates. Applied Physics Letters 2007, 90 (17).
9. Tabakman, S. M.; Lau, L.; Robinson, J. T.; Price, J.; Sherlock, S. P.; Wang, H.; Zhang, B.; Chen, Z.; Tangsombatvisit, S.; Jarrell, J. A.; Utz, P. J.; Dai, H., Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat Commun 2011, 2, 466.
10. Gong, L.; Du, B.; Pan, L.; Liu, Q.; Yang, K.; Wang, W.; Zhao, H.; Wu, L.; He, Y., Colorimetric aggregation assay for arsenic(III) using gold nanoparticles. Microchimica Acta 2017, 184 (4), 1185-1190.
11. Roy, S.; Palui, G.; Banerjee, A., The as-prepared gold cluster-based fluorescent sensor for the selective detection of As(III) ions in aqueous solution. Nanoscale 2012, 4 (8), 2734-40.
12. Chang, C.-C.; Lin, S.; Wei, S.-C.; Chen, C.-Y.; Lin, C.-W., An amplified surface plasmon resonance “turn-on” sensor for mercury ion using gold nanoparticles. Biosensors and Bioelectronics 2011, 30 (1), 235-240.
13. Kalluri, J. R.; Arbneshi, T.; Khan, S. A.; Neely, A.; Candice, P.; Varisli, B.; Washington, M.; McAfee, S.; Robinson, B.; Banerjee, S.; Singh, A. K.; Senapati, D.; Ray, P. C., Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of arsenic in groundwater. Angew Chem Int Ed Engl 2009, 48 (51), 9668-71.
14. Vera-Aguilar, E.; López-Sandoval, E.; Godina-Nava, J. J.; Cebrián-García, M. E.; López-Riquelme, O.; Rodríguez-Segura, M. A.; Zendejas-Leal, B. E.; Vázquez-López, C., Arsenic Removal from Zimapan Contaminated Water Monitored by the Tyndall Effect. Journal of Environmental Protection 2015, 06 (05), 538-551.
15. Yogarajah, N.; Tsai, S. S. H., Detection of trace arsenic in drinking water:
challenges and opportunities for microfluidics. Environmental Science: Water Research & Technology 2015, 1 (4), 426-447.
16. Luong, J.; Majid, E.; Male, K., Analytical tools for monitoring arsenic in the environment. The Open Analytical Chemistry Journal 2007, 1 (1).
17. De Acha, N.; Elosua, C.; Corres, J. M.; Arregui, F. J., Fluorescent Sensors for the Detection of Heavy Metal Ions in Aqueous Media. Sensors (Basel) 2019, 19 (3).
18. Rupasinghe, T.; Cardwell, T. J.; Cattrall, R. W.; Potter, I. D.; Kolev, S. D., Determination of arsenic by pervaporation-flow injection hydride generation and permanganate spectrophotometric detection. Analytica Chimica Acta 2004, 510 (2), 225-230.
19. Dasgupta, P. K.; Huang, H.; Zhang, G.; Cobb, G. P., Photometric measurement of trace As (III) and As (V) in drinking water. Talanta 2002, 58 (1), 153-164.
20. Mays, D. E.; Hussam, A., Voltammetric methods for determination and speciation of inorganic arsenic in the environment--a review. Anal Chim Acta 2009, 646 (1-2), 6-16.
21. Khairy, M.; Kampouris, D. K.; Kadara, R. O.; Banks, C. E., Gold Nanoparticle Modified Screen Printed Electrodes for the Trace Sensing of Arsenic(III) in the Presence of Copper(II). Electroanalysis 2010, 22 (21), 2496-2501.
22. Sanllorente-Mendez, S.; Dominguez-Renedo, O.; Arcos-Martinez, M. J., Immobilization of acetylcholinesterase on screen-printed electrodes. Application to the determination of arsenic(III). Sensors (Basel) 2010, 10 (3), 2119-28.
23. Rothert, A.; Deo, S. K.; Millner, L.; Puckett, L. G.; Madou, M. J.; Daunert, S., Whole-cell-reporter-gene-based biosensing systems on a compact disk microfluidics platform. Anal Biochem 2005, 342 (1), 11-9.
24. Diesel, E.; Schreiber, M.; van der Meer, J. R., Development of bacteria-based bioassays for arsenic detection in natural waters. Anal Bioanal Chem 2009, 394 (3), 687-93.
25. Li, F.; Wang, D.-D.; Yan, X.-P.; Su, R.-G.; Lin, J.-M., Speciation analysis of inorganic arsenic by microchip capillary electrophoresis coupled with hydride generation atomic fluorescence spectrometry. Journal of Chromatography A 2005, 1081 (2), 232-237.
26. Hashem, M. A.; Jodai, T.; Ohira, S.-I.; Wakuda, K.; Toda, K., High sensitivity arsenic analyzer based on liquid-reagent-free hydride generation and chemiluminescence detection for on-site water analysis. Analytical sciences 2011, 27 (7), 733-733.
27. Wu, Y.; Zhan, S.; Wang, F.; He, L.; Zhi, W.; Zhou, P., Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III) in aqueous solution. Chem Commun (Camb) 2012, 48 (37), 4459-61.
28. Forzani, E. S.; Foley, K.; Westerhoff, P.; Tao, N., Detection of arsenic in groundwater using a surface plasmon resonance sensor. Sensors and Actuators B: Chemical 2007, 123 (1), 82-88.