簡易檢索 / 詳目顯示

研究生: 謝銓雯
Hsieh, Chuan-Wen
論文名稱: 臺灣濕地的根固著性大型水生植物群落多樣性之初探
Evaluating the diversity of rooted macrophytes in Taiwan’s wetlands
指導教授: 李佩珍
Lee, Pei-Jen
口試委員: 李佩珍
Lee, Pei-Jen
林登秋
Lin, Teng-Chiu
林政道
Lin, Cheng-Tao
口試日期: 2024/06/20
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 51
中文關鍵詞: 水域生態系生物多樣性保育規劃保護區群落組成大型水生植物
英文關鍵詞: Aquatic ecosystem, biological diversity, conservation planning, community assembly, protected areas, aquatic macrophytes
研究方法: 次級資料分析
DOI URL: http://doi.org/10.6345/NTNU202401853
論文種類: 學術論文
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 群落之間的組成變化,亦即β多樣性的模式,由兩種機制所決定:(1) 物種環境篩選 (species sorting) : 物種的分布依各自棲位限制及受到環境因素過濾,僅分布於適合其生存的環境;(2)物種傳播限制 (dispersal limitation) : 物種受其擴散能力限制,僅能存活在他們能移動到達之地點,然而這兩種驅動因素的相對重要性在不同生態系、不同生物群落間可能有所差異。大型水生植物 (aquatic macrophytes) 在濕地生態系之中扮演重要的功能,但是現有的研究大多針對個別濕地進行探討,未能涵蓋濕地間生物群落的比較以及跨濕地之β多樣性分析,難以對臺灣濕地保護區之規劃提供整體性參考。因此本研究主要目的為評估重要濕地環境基礎調查資料(國家公園署濕地環境資料庫中已電子化之資料)是否適合用於濕地水生植物群落間beta多樣性驅動因素之研究。結果顯示,臺灣濕地水生植物群落間𝛽多樣性主要是受到物種置換(turnover)影響,其主要驅動因素為水質環境,而地理距離的影響較小,亦即這些群落的組成主要由物種環境篩選而非物種傳播限制所主導。本項分析的可信度或許僅能反映臺灣南北兩區的濕地樣貌,無法代表臺灣整體濕地。

    The composition changes between communities, that is, the pattern of beta diversity, is determined by two mechanisms: (1) species sorting: the distribution of species is limited by their respective habitats and filtered by environmental factors, and is only distributed in An environment suitable for their survival; (2) Species dispersal limitation: Species are limited by their dispersal ability and can only survive in places they can move to. However, the relative importance of these two driving factors varies in different ecosystems and May vary between biomes. Aquatic macrophytes play an important role in wetland ecosystems. Nevertheless, existing studies mostly focus on individual wetlands and fail to cover comparisons of biological communities among wetlands and analysis of beta diversity across wetlands, making it difficult to Provide an overall reference for the planning of wetland reserves in Taiwan. Therefore, the main purpose of this study is to evaluate whether the basic survey data of important wetland environments (digitized data in the National Parks Department's wetland environment database) is suitable for studying the driving factors of beta diversity among wetland aquatic plant communities. The results show that the diversity of aquatic plant communities in wetlands in Taiwan is mainly affected by species turnover. The main driving factor is water quality environment, while geographical distance has a smaller impact. That is to say, the composition of these communities is mainly determined by species environment. Dominated by non-species dispersal limitations. The reliability of this analysis may only reflect the appearance of wetlands in the northern and southern regions of Taiwan, but cannot represent Taiwan's overall wetlands.

    第一章 緒論 1 第二章 研究材料與方法 5 一、研究系統 5 二、植物資料 7 三、水質資料 7 四、多樣性指數計算 7 五、地理距離矩陣 9 六、環境距離矩陣 9 七、統計分析 9 第三章 結果 11 一、本研究濕地之植物統計 11 二、本研究濕地的代表性 24 三、分析的合理性 26 四、𝛽多樣性分析的結果 30 第四章 討論 37 一、本研究濕地的代表性與合理性 37 二、𝛽多樣性分析的結果 37 三、研究限制 39 結論 40 參考文獻 41 附錄 48

    Alahuhta, J. (2015). Geographic patterns of lake macrophyte communities and species richness at regional scale—Alahuhta—2015—Journal of Vegetation Science—Wiley Online Library. Journal of Vegetation Science, 26, 564–575. https://doi.org/10.1111/jvs.12261
    Alahuhta, J., & Heino, J. (2013). Spatial extent, regional specificity and metacommunity structuring in lake macrophytes. Journal of Biogeography, 40(8), 1572–1582. https://doi.org/10.1111/jbi.12089
    Alahuhta, J., Kosten, S., Akasaka, M., Auderset, D., Azzella, M. M., Bolpagni, R., Bove, C. P., Chambers, P. A., Chappuis, E., Clayton, J., de Winton, M., Ecke, F., Gacia, E., Gecheva, G., Grillas, P., Hauxwell, J., Hellsten, S., Hjort, J., Hoyer, M. V., … Heino, J. (2017). Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. Journal of Biogeography, 44(8), 1758–1769. https://doi.org/10.1111/jbi.12978
    Andres Baselga, David Orme, Sebastien Villeger, Julien De Bortoli, Fabien Leprieur, Maxime Logez, Sara Martinez-Santalla, Ramiro Martin-Devasa, Carola Gomez-Rodriguez, Rosa M. Crujeiras, & Renato Henriques-Silva. (2023). Partitioning Beta Diversity into Turnover and Nestedness Components. https://cran.r-project.org/web/packages/betapart/betapart.pdf
    Ávila, A. C., Pires, M. M., Rodrigues, E. N. L., Costi, J. A. R., Stenert, C., & Maltchik, L. (2020). Drivers of the beta diversity of spider assemblages in southern Brazilian temporary wetlands. Ecological Entomology, 45(3), 466–475. https://doi.org/10.1111/een.12816
    Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity: Partitioning beta diversity. Global Ecology and Biogeography, 19(1), 134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x
    Baselga, A. (2012). The relationship between species replacement, dissimilarity derived from nestedness, and nestedness: Species replacement and nestedness. Global Ecology and Biogeography, 21(12), 1223–1232. https://doi.org/10.1111/j.1466-8238.2011.00756.x
    Bertuzzi, T., Marques Pires, M., & Maltchik, L. (2018). Drivers of the beta diversity of aquatic plant communities along a latitudinal gradient in southern Brazilian coastal ponds. Journal of Vegetation Science, 30(2), 281–290. https://doi.org/10.1111/jvs.12711
    Boschilia, S., Oliveira, E., & Schwarzbold, A. (2016). Partitioning beta diversity of aquatic macrophyte assemblages in a large subtropical reservoir: Prevalence of turnover or nestedness? Aquatic Sciences, 78, 615–625. https://doi.org/10.1007/s00027-015-0450-3
    Capers, R. S., Selsky, R., & Bugbee, G. J. (2010). The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshwater Biology, 55(5), 952–966. https://doi.org/10.1111/j.1365-2427.2009.02328.x
    Cayetano Gutiérrez-Cánovas, A., Millán, J., Velasco, J., Vaughan, I. P., & Ormerod, S. J. (2013). Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Global Ecology and Biogeography, 22(3), 290-304. https://doi.org/10.1111/geb.12060
    Clarke, K., & Green, R. (1988). Statistical Design and Analysis for a ‘Biological Effects’ Study. Marine Ecology - Progress Series, 46, 213–226. https://doi.org/10.3354/meps046213
    De Bie, T., De Meester, L., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., Hampel, H., Denys, L., Vanhecke, L., Van der Gucht, K., Van Wichelen, J., Vyverman, W., & Declerck, S. a. J. (2012). Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters, 15(7), 740–747. https://doi.org/10.1111/j.1461-0248.2012.01794.x
    Declerck, S. A. J., Coronel, J. S., Legendre, P., & Brendonck, L. (2011). Scale dependency of processes structuring metacommunities of cladocerans in temporary pools of High-Andes wetlands. Ecography, 34(2), 296–305. https://doi.org/10.1111/j.1600-0587.2010.06462.x
    Engelhardt, K. A., & Ritchie, M. E. (2001). Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature, 411(6838), 687–689. https://doi.org/10.1038/35079573
    Heino, J. (2011). A macroecological perspective of diversity patterns in the freshwater realm. Freshwater Biology, 56(9), 1703–1722. https://doi.org/10.1111/j.1365-2427.2011.02610.x
    Heino, J., Melo, A. S., Siqueira, T., Soininen, J., Valanko, S., & Bini, L. M. (2015). Metacommunity organisation, spatial extent and dispersal in aquatic systems: Patterns, processes and prospects. Freshwater Biology, 60(5), 845–869. https://doi.org/10.1111/fwb.12533
    Jacob B. Socolar, James J. Gilroy, William E. Kunin, & David P. Edwards. (2016). How Should Beta-Diversity Inform Biodiversity Conservation? Trends in Ecology & Evolution, 31(1), 67–80. https://doi.org/10.1016/j.tree.2015.11.005
    Jari Oksanen, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, Peter R. Minchin, R. B. O’Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens, Eduard Szoecs, & Helene Wagner. (2018). Community Ecology Package. https://cran.r-project.org, https://github.com/vegandevs/vegan
    K. F. Chung & K. T. Shao. (2022). Catalogue of Life in Taiwan. https://taicol.tw/zh-hant/policy. Retrieved 2023-12 from https://taicol.tw
    Kadlec, J. A., & Wentz, W. A. (1974). State-of-the-art survey and evaluation of marsh plant establishment techniques: Induced and natural : volume I, report of research [Report]. U.S. Army Engineer Waterways Experiment Station. https://erdc-library.erdc.dren.mil/jspui/handle/11681/47333
    Karl Cottenie. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters, 8(11), 1175–1182. https://doi.org/10.1111/j.1461-0248.2005.00820.x
    Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M., & Gonzalez, A. (2004). The metacommunity concept: A framework for multi-scale community ecology. Ecology Letters, 7(7), 601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x
    Mitsch, W. J., & Gosselink, J. G. (2015). Wetlands (Fifth edition). John Wiley and Sons, Inc.
    Myers, J. H., Simberloff, D., Kuris, A. M., & Carey, J. R. (2000). Eradication revisited: Dealing with exotic species. Trends in Ecology & Evolution, 15(8), 316–320. https://doi.org/10.1016/S0169-5347(00)01914-5
    O’Hare, M. T., Gunn, I. D. M., Chapman, D. S., Dudley, B. J., & Purse, B. V. (2012). Impacts of space, local environment and habitat connectivity on macrophyte communities in conservation lakes. Diversity and Distributions, 18(6), 603–614. https://doi.org/10.1111/j.1472-4642.2011.00860.x
    Pierre Legendre & Louis Legendre. (2012). Numerical Ecology_3rd (3rd ed.). Elsevier. https://shop.elsevier.com/books/numerical-ecology/legendre/978-0-444-53868-0
    Prendergast, J. R., Quinn, R. M., Lawton, J. H., Eversham, B. C., & Gibbons, D. W. (1993). Rare species, the coincidence of diversity hotspots and conservation strategies. Nature, 365(6444), 335–337. https://doi.org/10.1038/365335a0
    Rejmankova, E. (2011). The role of macrophytes in wetland ecosystems. Journal of Ecology and Environment, 34(4), 333–345. https://doi.org/10.5141/JEFB.2011.044
    Reynaldo Linares-Palomino & Michael Kessler. (2009). The role of dispersal ability, climate and spatial separation in shaping biogeographical patterns of phylogenetically distant plant groups in seasonally dry Andean forests of Bolivia. Journal of Biogeography, 36(2), 280–290. https://doi.org/10.1111/j.1365-2699.2008.02028.x
    Soininen, J., Lennon, J. J., & Hillebrand, H. (2007). A multivariate analysis of beta diversity across organisms and environments. Ecology, 88(11), 2830–2838. https://doi.org/10.1890/06-1730.1
    Soons, M. B. (2006). Wind dispersal in freshwater wetlands: Knowledge for conservation and restoration. Applied Vegetation Science, 9(2), 271–278. https://doi.org/10.1111/j.1654-109X.2006.tb00676.x
    Thomaz, S. (2021). Ecosystem services provided by freshwater macrophytes. Hydrobiologia, 850. https://doi.org/10.1007/s10750-021-04739-y
    Tonkin, Jonathan D., Stoll, Stefan, Jähnig, Sonja C., & Haase, Peter. (2016). Contrasting metacommunity structure and beta diversity in an aquatic-floodplain system. Oikos, 125(5), 686–697. https://doi.org/10.1111/oik.02717
    Trindade, C. R. T., Landeiro, V. L., & Schneck, F. (2018). Macrophyte functional groups elucidate the relative role of environmental and spatial factors on species richness and assemblage structure. Hydrobiologia, 823(1), 217–230. https://doi.org/10.1007/s10750-018-3709-6
    Viana, D. S., Figuerola, J., Schwenk, K., Manca, M., Hobæk, A., Mjelde, M., Preston, C. D., Gornall, R. J., Croft, J. M., King, R. A., Green, A. J., & Santamaría, L. (2016). Assembly mechanisms determining high species turnover in aquatic communities over regional and continental scales. Ecography, 39(3), 281–288. https://doi.org/10.1111/ecog.01231
    Viana, D. S., Santamaría, L., Michot, T. C., & Figuerola, J. (2013). Migratory strategies of waterbirds shape the continental-scale dispersal of aquatic organisms. Ecography, 36(4), 430–438. https://doi.org/10.1111/j.1600-0587.2012.07588.x
    Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30(3), 279–338. https://doi.org/10.2307/1943563
    Whittaker, R. H. (1972). Evolution and Measurement of Species Diversity. TAXON, 21(2–3), 213–251. https://doi.org/10.2307/1218190
    Winegardner, A. K., Jones, B. K., Ng, I. S. Y., Siqueira, T., & Cottenie, K. (2012). The terminology of metacommunity ecology. Trends in Ecology & Evolution, 27(5), 253–254. https://doi.org/10.1016/j.tree.2012.01.007
    內政部營建署城鄉發展分署. (2022). 重要濕地名冊. 重要濕地名冊. http://wetland-tw.tcd.gov.tw/tw/Landprotect.php
    內政部營建署城鄉發展分署. (2023). 濕地環境資料庫Taiwan Wetland. https://wetland-db.nps.gov.tw/?#/
    張文亮. (2006). 水生植物在人工濕地水質淨化功效之評估及管理.pdf. 河川水質自然淨化工法規劃設計與建造講習會.
    李松柏. (2007). 台灣水生植物圖鑑. 晨星出版.
    楊遠波, 顏聖紘, 林仲剛, 黃世富 (菱科), 郭紀凡(蓼科), & 梁慧舟(莎草科). (2001). 臺灣水生植物圖誌. 行政院農業委員會.
    臺灣植物紅皮書編輯委員會. (2017). 2017臺灣維管束植物紅皮書名錄. 特有生物保育中心.
    環境部環境管理署. (2018). 植物生態評估技術規範. 取自 https://sgwenv.moenv.gov.tw/RISK/dispPageBox/getFile/Get.aspx?FileLocation=PJ-RISKSYS%5cFiles%5c&FileName=204.pdf

    無法下載圖示 本全文未授權公開
    QR CODE