研究生: |
王詠柔 Wang, Yung-Jou |
---|---|
論文名稱: |
應用體驗式教學法於高中人工智慧學習 Applying Experiential Learning in Teaching High School Students Artificial Intelligence |
指導教授: | 吳正己 |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 人工智慧 、體驗式學習 、影像辨識 、資訊科技課程 |
英文關鍵詞: | Artificial intelligence, Experiential learning, Image recognition, Computing Curriculum |
DOI URL: | http://doi.org/10.6345/NTNU202001265 |
論文種類: | 學術論文 |
相關次數: | 點閱:378 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究應用Kolb體驗式教學於高中生學習人工智慧,並探討此教學方式對高中生學習成就及學習態度之影響,人工智慧教材發展係以影像辨識為主題。研究採準實驗設計,參與者為台北市某公立高中一年級學生,兩班共計68位學生,一班33位學生為實驗組,採用體驗式教學法;一班35位學生為控制組,使用傳統教學法。教學實驗含後測為期五週共250分鐘。研究工具包含研究者開發之教材、成就測驗、學習單、及態度問卷。
研究結果顯示,採用人工智慧體驗式教學之實驗組,其學習成就顯著優於傳統教學,但學習態度卻低於採用傳統教學之控制組。實驗組學習態度低於控制組的原因,主要是體驗式課程節奏緊湊以致造成學生實作時間不足,以及採用數位學習單操作困難,學習態度因而受到影響。建議未來實施Kolb體驗式教學於人工智慧學習,應預留足夠的時間讓學生進行體驗、觀察、歸納和實作,以達到完整的體驗經驗;在學習輔助工具(如數位學習單)的選擇上,須考量學生的先備知識和電腦操作能力;並應選擇貼近日常生活的有趣應用作為範例。
The study applied Kolb’s experiential learning to design learning activities for high school students to learn artificial intelligence (AI) concepts, in particular, image recognition. The effects of the approach were evaluated in terms of students’ achievement and attitudes toward learning. A quasi-experimental design was implemented in the study. The participants were sixty-eight 10th grade students from a public high school in Taipei. One class with 33 students applied experiential learning in learning AI served as the experimental group, the other class with 35 students used traditional teaching method served as the control group. The research instruments developed in this study included the teaching materials, students’ achievement tests, digital worksheets, and attitude questionnaire.
The results showed that students in the experimental group performed better than the control group in the achievement test. However, the experimental group had lower scores than the control group in attitude toward learning. The less positive attitude of the experimental group might be due to that they did not have enough time to complete the learning activities and the difficulty in filling out the digital worksheets. It is suggested future studies should provide students with enough time for each of the Kolb’s experiential learning process, and should choose proper instruments to assist students’ learning in the learning activities.
日本文部科學省(2016)。平成28年版科学技術白書。取自http://www.mext.go.jp/b_menu/hakusho/html/hpaa201601/detail/1371168.htm
中國國務院(2017)。新一代人工智能發展規劃。取自http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm
行政院(2018)。台灣AI行動計畫。取自https://digi.ey.gov.tw/File/4C622B6A10053DAD
朱德清(2003)。以實驗策略在高中進行人工智慧教學之研究。國立臺灣師範大學碩士學位論文,台北市。取自https://hdl.handle.net/11296/yufy9f
李建樹(主編)(2019)。和AI做朋友 相知篇 從0開始學AI。教育部。
李傑、郭大維、陳信希(主編)(2019)。人工智慧導論。新北市:全華圖書。
科技部(2017)。人工智慧推動策略。取自 https://www.most.gov.tw/most/attachments/7ec20154-6378-404a-99f6-342a9c1e37d8
翁舒婷(2018)。人工智慧將納入課綱!給台灣學生的「AI 科普教科書」,預計明年正式出版。社企流。2018年09月04日,取自:https://www.seinsights.asia/article/3289/3270/5673
張玉山、張雅富、陳冠吟(2016)。Kolb經驗學習理論於國中機器人活動之教學應用。科技與人力教育季刊,2(4),1-16。
陳玉琨、湯曉鷗(2018)。人工智能基礎(高中版)。大陸:華東師範大學出版社。
教育部(2018)。十二年國民基本教育課程綱要總綱。台北市。
陳修柔(2018)。經驗學習環模式之混成式教學對國小學童程式學習成就之影響。國立臺北教育大學碩士學位論文,台北市。 取自https://hdl.handle.net/11296/xpv6c5
趙偉順、張玉山(2011)。經驗學習理論在生活科技課程的教學應用-以 [扭轉乾坤] 曲柄玩具單元為例。生活科技教育,44(6),1-21。
潘志傑(2009)。應用樂高機器人於人工智慧教育之教案設計、教學評量及支援教學平台輔助工具開發之研究。國立屏東科技大學碩士學位論文,屏東市。取自https://hdl.handle.net/11296/u3j3x9
賴婉玥(2018)。以聊天機器人實作培養學生運算思維。國立臺灣師範大學碩士學位論文,台北市。取自https://hdl.handle.net/11296/k65qbn
謝榕、李霞(2014)。人工智能課程教學案例庫建設及案例教學實踐。計算機教育,19,93-97。
Abdul, B., Van Wie, B. J., Babauta, J. T., Golter, P. B., Brown, G. R., Bako, R. B., & Olaofe, O. O. (2011). Addressing student learning barriers in developing nations with a novel hands-on active pedagogy and miniaturized industrial process equipment: The case of Nigeria. International Journal of Engineering Education, 27(2), 458-476.
AI4Kids(2019)。為什麼孩子要學習人工智慧?。取自https://www.ai4kids.ai/2019/09/26/%E7%82%BA%E4%BB%80%E9%BA%BC%E5%AD%A9%E5%AD%90%E8%A6%81%E5%AD%B8%E7%BF%92%E4%BA%BA%E5%B7%A5%E6%99%BA%E6%85%A7%EF%BC%9F/
Analide, C., & Kim, P. (2017, August). Experiential learning in data science: from the dataset repository to the platform of experiences. In Intelligent Environments 2017: Workshop Proceedings of the 13th International Conference on Intelligent Environments (Vol. 22, p. 122).
Baker, A. C., Jensen, P. J., & Kolb, D. A. (2002). Conversational learning: An experiential approach to knowledge creation. Greenwood Publishing Group.
Burgsteiner, H., Kandlhofer, M., & Steinbauer, G. (2016, March). Irobot: Teaching the basics of artificial intelligence in high schools. In Thirtieth AAAI Conference on Artificial Intelligence.
Chattratichart, J. (2007, April). A theory-based approach to designing student learning context. In CHI'07 Extended Abstracts on Human Factors in Computing Systems (pp. 1721-1728).
Christian C. (2003) Scientists’ role in educational content development. Journal of Science Education and Technology, 12, 31–37.
Cooksey, A. (2011). Experiential education: Making the most of learning outside the classroom. Journal of the Scholarship of Teaching and Learning, 124-126.
CSTA (2017). CSTA K-12 Computer Science Standards, Revised 2017. Retrieved from https://www.csteachers.org/page/standards.
CSTA & AI4K12 (2019). What Should K-12 Students Know About Artificial Intelligence? Retrieved from http://princetonacm.acm.org/downloads/Touretzky-AI4K12-2019-11-21.pdf
DeNero, J., & Klein, D. (2010). Teaching Introductory Artificial Intelligence with Pac-Man. Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI, 1885-1889.
Ellis, G. W., & Andam, B. (2004). Teaching High School Students to Teach Machines. American Society for Engineering Education Annual Conference & Exposition, 3630.(pp. 9.1183.3-9.1183.13)
Estevez, J., Garate, G., Guede, J. M., & Graña, M. (2019). Using Scratch to Teach Undergraduate Students' Skills on Artificial Intelligence. arXiv preprint arXiv:1904.00296.
Evangelista, I., Blesio, G., & Benatti, E. (2018, November). Why Are We Not Teaching Machine Learning at High School? A Proposal. In 2018 World Engineering Education Forum-Global Engineering Deans Council (WEEF-GEDC) (pp. 1-6). IEEE.
Fabiane Barreto Vavassori Benitti. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58, 3 (2012), 978 – 988. https://doi.org/10.1016/j.compedu.2011.10.006
Handler, A., & Duncan, K. (2006). Hammerhead shark research immersion program: Experiential learning leads to lasting educational benefits. Journal of Science Education and Technology, 15(1), 9-16.
Heinze, C. A., Haase, J., & Higgins, H. (2010, July). An action research report from a multi-year approach to teaching artificial intelligence at the k-6 level. In First AAAI Symposium on Educational Advances in Artificial Intelligence.
HO, J. W., & SCADDING, M. (2019). Classroom Activities for Teaching Artificial Intelligence to Primary School Students. CoolThink@ JC, 157.
Imberman, S. P. (2003, January). Teaching neural networks using LEGO handy board robots in an artificial intelligence course. In Proceedings of the 34th SIGCSE technical symposium on Computer science education (pp. 312-316).
Kahn, K. M., & Winters, N. (2018). AI programming by children.
Kandlhofer, M., Steinbauer, G., Hirschmugl-Gaisch, S., & Huber, P. (2016, October). Artificial intelligence and computer science in education: From kindergarten to university. In 2016 IEEE Frontiers in Education Conference (FIE) (pp. 1-9). IEEE.
Klassner, F. (2002). Using LEGO Mindstorms across the computer science curriculum. Journal of Computing Sciences in Colleges, 18(1), 116-116.
Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. NJ: Prentice-Hall.
Konak, A., Clark, T. K., & Nasereddin, M. (2014). Using Kolb's Experiential Learning Cycle to improve student learning in virtual computer laboratories. Computers & Education, 72, 11-22.
Kumar, D., & Meeden, L. (1998). A robot laboratory for teaching artificial intelligence. ACM SIGCSE Bulletin, 30(1), 341-344.
Kumar, A. N. (2004). Three years of using robots in an artificial intelligence course: lessons learned. Journal on Educational Resources in Computing (JERIC), 4(3), 2-es.
Kumar, A., Kumar, D., & Russell, I. (2006). Non-traditional projects in the undergraduate AI course. ACM SIGCSE Bulletin, 38(1), 479-480.
Lai, C. H., Yang, J. C., Chen, F. C., Ho, C. W., & Chan, T. W. (2007). Affordances of mobile technologies for experiential learning: the interplay of technology and pedagogical practices. Journal of Computer Assisted Learning, 23(4), 326-337.
McGovern, A., Tidwell, Z., & Rushing, D. (2011, August). Teaching introductory artificial intelligence through java-based games. In Second AAAI Symposium on Educational Advances in Artificial Intelligence.
Radu, M. & Ilkka, J.(2019). Machine Learning for High School Students. Proceedings of the 19th Koli Calling International Conference on Computing Education Research, 10, 1-9.
Russell, I., Markov, Z., & Neller, T. (2006, June). Teaching AI through machine learning projects. In Proceedings of the 11th annual SIGCSE conference on Innovation and technology in computer science education (pp. 323-323).
Sean Cavanagh (2019, April 15). What Should K-12 Students Know About Artificial Intelligence? New Guidelines Are in the Works. Retrieved from https://marketbrief.edweek.org/marketplace-k-12/k-12-students-know-artificial-intelligence-new-standards-works/?cmp=eml-enl-tl-news1&M=58808858&U=1731833&UUID=bdf370f367f89a3d38d2ac413a4340d8
Selkowitz, R., & Burhans, D. T. (2014, June). Shallow blue: lego-based embodied AI as a platform for cross-curricular project based learning. In Fifth AAAI Symposium on Educational Advances in Artificial Intelligence.
Shih, W. C. (2019, July). Integrating Computational Thinking into the Process of Learning Artificial Intelligence. In Proceedings of the 2019 3rd International Conference on Education and Multimedia Technology (pp. 364-368).
Touretzky, D., Gardner-McCune, C., Martin, F., & Seehorn, D. (2019, July). Envisioning AI for K-12: What Should Every Child Know about AI?. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, pp. 9795-9799).
Trindade J., Fiolhais C. & Almeida L. (2002). Science learning in virtual environments. British Journal of Educational Technology, 33, 471–488.
Van Brummelen, J., Shen, J. H., & Patton, E. W. (2019, June). The Popstar, the Poet, and the Grinch: Relating Artificial Intelligence to the Computational Thinking Framework with Block-based Coding. In Proceedings of International Conference on Computational Thinking Education (pp. 160-161).
Whitelock D., Romano D., Jelfs A. & Brna P. (2000). Perfectpresence: what does this mean for the design of virtual learning environments? Education and Information Technologies, 5, 277–289.
Wicentowski, R., & Newhall, T. (2005). Using image processing projects to teach CS1 topics. ACM SIGCSE Bulletin, 37(1), 287-291.
Wollowski, M., Selkowitz, R., Brown, L. E., Goel, A., Luger, G., Marshall, J., Neel, A., Neller, T., and Norvig, P. (2016, March). A survey of current practice and teaching of AI. In Thirtieth AAAI Conference on Artificial Intelligence.
Wong, D., Zink, R., & Koenig, S. (2010, July). Teaching artificial intelligence and robotics via games. In First AAAI Symposium on Educational Advances in Artificial Intelligence.
Wu M. K. (2009). The Insights of John Dewey’s Empirical Philosophy for Curriculum and Teaching.Journal of Taipei Municipal University of Education, 40(1), 35–54.