簡易檢索 / 詳目顯示

研究生: 夏秋蘋
SHIA CHIU-PING
論文名稱: 從力的比較觀點探討九年級學生理解浮力概念困難之研究
A student into the difficulty of ninth grade students in reasoning buoyancy problems from the perspective of force comparison
指導教授: 譚克平
Tam, Hak-Ping
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 190
中文關鍵詞: 浮力迷思概念兩力平衡
英文關鍵詞: buoyancy, misconception, force equilibrium
論文種類: 學術論文
相關次數: 點閱:194下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    浮力的概念,在物理學當中是屬於重要且不容易學習的單元,學生必須統合之前學過的密度、體積、質量、壓力…等許多相關知識,並且要能掌握阿基米德的原理及物體在液體中抽象的受力情形,才得以架構出完整的浮力概念。鑒於近年來的基本學力測驗,有關浮力問題的答對率普遍偏低,研究者在學生解題過程中發現,普遍學生不太會使用物體在液體中受力比較的情形來解浮力的問題,許多可以用簡單的受力比較來解決的浮力問題,學生卻被其它複雜的想法所困住,反而無法解答。研究者查閱國內外十八篇相關討論浮力的文獻,尚未發現有從受力的比較觀點,來探討物體在液體中所受浮力的情形,因此本研究設計欲探討學生能否從物體受力的比較情形,來減少在浮力方面的學習困難,希望藉此提升學生在學習浮力的整體成效。
    本研究主要從「力平衡」的概念為主軸,探討學生在使用物體受力的比較來理解「浮體」浮力、「沉體」浮力、「判斷浮沉」、「液體密度改變後的浮體」浮力、「液體密度改變後的沉體」浮力,這五個面向的浮力問題。本研究的浮力試題經由預試後確定信度、效度皆達到標準後正式施測。
    研究結果發現:一、能掌握力平衡概念的學生,在以上有關浮力的五個向度的答對率皆高於未能掌握力平衡的學生。二、整體而言男生在浮力各向度的表現是優於女生的。三、使用「受力比較」模式解浮力題目的答對率高於使用「密度」模式的學生。
    綜上所述,使用力的比較方式來解浮力問題可以減少學生在學習浮力的困難,而且可以提高浮力問題的答對率。

    Abstract
    Buoyancy is an important but difficult concept in physics. Students need to integrate knowledge that they have previously acquired about density, volume, mass, and pressure. Moreover ,they need to understand Archimedes' principle and concept of the abstract force on an object in liquid before they can completely frame the concept of buoyancy. In recent years, students also had relatively lower performance in solving problems related to buoyancy in the Basic Competence Test. The researcher found in their problem-solving process that most of them were not familiar with comparing the forces on an object in liquid to solve buoyancy problems. Many problems could be solved through comparison of forces, but students' minds were restrained by other complicated methods and could not solve the problems correctly. In a review of 18 local studies of buoyancy, it was found that none of the existing studies used force comparison to explore the buoyancy of an object in liquid. Thus, the purpose of this study is to investigate whether the learning of buoyancy would be easier for students through comparison of forces on object, so as to enhance the overall learning effectiveness of students’ on buoyancy.
    Based on the concept of “force equation”, this study probed into the understanding of students on buoyancy from five perspectives, including buoyancy of “a floating object”, buoyancy of “a sinking object”, “judging whether an object is floating or sinking”, buoyancy of “a floating object after liquid density has changed”, and buoyancy of “a sinking object after liquid density has changed”. Before the formal test, a pre-test of the test problems about buoyancy was conducted to ensure validity and reliability of the test instrument.
    The research findings were: (1) Students familiar with the concept of force equation demonstrated higher correct response rates in all aspect of buoyancy problems than those unfamiliar with the concept of force equilibrium; (2) Generally, boys outperformed girls in all aspect of buoyancy problems; (3) Students who used “force comparison” to solve buoyancy problems also outperformed those who used “density” to solve buoyancy problems.
    To sum up, using force comparison to solve buoyancy problems could reduce the difficulty of solving buoyancy problems and also enhance the correct response rate.

    目錄 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 6 第三節 名詞界定 7 第四節 研究範圍及限制 8 第貳章 文獻探討 9 第一節 概念形成與改變的理論研究 9 第二節 有關迷思概念的研究 14 第三節 力平衡與浮力概念發展的相關研究 23 第四節 浮力迷思概念之相關研究 30 第五節 教科書的學習 42 第參章 研究方法 46 第一節 研究設計 46 第二節 研究對象 47 第三節 研究工具 50 第四節 研究過程 69 第五節 資料處理 70 第肆章 研究結果與討論 71 第一節 學生的整體表現 72 第二節 學生對於「力平衡」概念的理解 77 第三節 學生對於「浮體的浮力與重力」的理解 91 第四節 學生對於「沉體的浮力與重力」的理解 104 第五節 學生如何判斷物體在液體中沈浮狀態 116 第六節 學生對於「液體密度改變後對浮體的浮力影響」的理解 133 第七節 學生對於「液體密度改變對沉體的浮力影響」的理解 144 第八節 使用「密度」或「力平衡」模式解浮力問題之難易比較 154 第伍章 討論與建議 162 第一節 研究發現與結論 162 第二節 建議 171 文獻參考 179 中文部分 179 外文部分 181 附錄一 浮力評量試題及參考答案 184 附錄二 從力平衡理解浮力評量題本各題評分標準 188

    文獻參考
    中文部分;
    江新合(1996)。理化教師學科教學能力之研究 國立高雄師範大學科學與教育學報,第1期pp.161-181 .
    江淑卿、郭生玉(1997)。不同學習過程的概念構圖策略對促進知識結構專家話語理解能力之效果研究。師大學報:教育類,42期。
    邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,第八卷第一期,1-34。
    張春興、林清山(1992)。教育心理學。台北:東華。
    蔡春來(1994)。國中生摩擦力的迷思概念。國立台灣師範大學科學教育研究所碩士論文。
    黃台珠(1984)。概念的研究及其意義。科學教育,66,165-177。
    黃達三(2001)。科學概念的學習。國立台灣師範大學科學教育研究所教學碩士班概念分析講義。
    黃湘武(1987)。學生推理能力與概念發展之研究。認知與學習研討會專輯。行政院國家科學委員。
    康軒出版社(2006)。自然與生活科技教科書(第四冊第六章)。
    翰林出版社(2006)。自然與生活科技教科書(第四冊第六章)。
    南一出版社(2006)。自然與生活科技教科書(第四冊第六章)。
    熊召弟、王美芬、段曉林、熊同鑫譯(1996)。科學學習心理學/Shawn M.Glynn,Bruce K.Britton 著。台北:心理。
    劉俊庚(2002)。迷思概念與概念改變教學策略之文獻分析—以概念構圖和後設分析模式探討其意涵與影響。國立台灣師範大學科學教育研究所碩士論文,未出版。
    鍾聖校(1994)。對科學教育錯誤研究之省思。教育研究資訊,2(3),89-110。
    郭重吉(1988)。從認知觀點探討自然科學的學習,教育學院學報,(13),335-363。
    郭重吉(1990)。學生科學認知結構的評估與描述。彰化師範大學學報(1)。
    郭重吉、吳武雄(1989)。利用晤談方式探查國中學生對重要物理概念的另有架構之研究。行政院國家科學委員會專題研究計畫成果報告。
    趙金祁、許榮富、黃方裕(1992)。科學哲學對科學知識組成之主張及其演變。科教月刊,161,4-17。
    蔡有財(1994)。從現象學本質建構學生建構浮力理解的心智模型。國立台灣師範大學物理研究所碩士論文,未出版。
    郭信宏(2005)。國中生在「壓力」與「浮力」單元學習後之迷思概念對解題之影響。國立中山大學教育研究所碩士論文,未出版。
    張銘傑(1996)。利用概念聯想晤談法來探究國二學生的浮力迷思概念及概念結構。國立高雄師範大學科學教育研究所碩士論文,未出版。
    莊麗娟(1995)。國小六年級浮力概念動態評量的效益分析。國立高雄師範大學科學教育研究所碩士論文,未出版。
    劉翠伶(2002)。職前教師的浮力概念及科學教學態度之探討。國立台灣師範大學科學教育研究所碩士論文,未出版。
    劉家成(2002)。以動態評量探究國中學生浮力概念的心智模式及概念改變之歷程。國立台灣師範大學科學教育研究所碩士論文,未出版。
    吳昆勇(2001)。阿基米得原理與引導式發現教學法對學生學習浮力概念的影響。國立台灣師範大學科學教育研究所碩士論文,未出版。
    閻金鐸(1989)。田世昆著,初中物理教學通論。北京:高等教育出版社。
    張同恂(1988)。初中物理教材分析和研究。北京:人民教育出版社。
    教師教學用書(初中物理第一冊)(1993)。北京:人民教育出版社。

    外文部分
    Arnaudin, M. W., Mintzes, J. J., Dunn, C. S., & Shafer, T. S. (1984). Concept mapping in college science teaching. Journal of College Science Teaching, 14, 117-121.
    Bruner, J.S.(1967). The process of education. Cambridge, Mass: Harvard University Press.
    Biddulph, F., & Osborne, R (1983). Children’s ideas about “Metals.”Learning in science pro-ject (primary). Working paper No. 112. New Zealand: Waikato Univ., Science Education Research Unit ( ERIC document Reporduction Service No. ED 252395)
    Cobern, W. W. (1989). World view theory and science education research: Fundamental epistemological structure as a critical factor in science leaning and attitude development. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching ( 62nd, San Francisco, CA, March 30-April 1, 1989.)
    Chi, M T. H (1992) . Conceptual change within and across ontological categoies: Implications for leaning and discovery in sciences. In R Giere (Ed.), Cognitive models of science: Minnesota studies in the philosophy of science (pp. 129-186). Minneapolis: University of Minnesota Press.
    Driver,R. ,Guesne,E.,& Tierghien,A.(1985).Some features of children ideas and their implications for teaching. Children ideas of scienc(pp.193-201).Milton Keynes:Open University Press.
    Driver, R., Guesne, E. & Tiberghien, A. (1985). Children’s ideas in science. Milton Keynes Philadelphia : Open University Press。(pp.145-169).
    Duiver, R., Guesne, E., & Tierghien, A. (1985). Some features of children’s ideas and their implications for teaching. In Driver, E. Guesne, & Tiberghein (Eds.), Children’s Ideas in Science.(193-201) Milton Keynes:Open University Press. 。
    Harty H. Samuel J. V. & Andersen H. O. (1991). Understanding the nature of science and attitudes toward science and science teaching of preservice elementary teachers in three preparation sequences. Journal of Elementary Science Education.
    Harlen.W.(1996).The teaching of science in primary schools.london:D Fulton Publishers.
    Hewson.M.G.AB.(1986).The acquisition of scientific knowledge:Analysis and representation of student conceptions concerning density.Science Education.70(2).159-170
    Head, J. (1986). Research into ‘alternative framework’: Promise and problems. Research in Science & Technological Education, 4(2), 203-211.
    Rowell.J.A.,& DAWSON,C.J.(1977b).Teaching about floating and sinking:Further studies toward closing the gap between cognitive psychology and Learning in Science and Mathematics.New York; Teachers College Press
    Treagust,R. duit,&B.J Fraser(1995).Improving teaching and learning in science and mathematics.Teacher College Press.
    Kuhn Thomas ( 1962/1994 ). The Structure of Scientific Revolutions.
    Lawson A. E. (1988). The acquisition of biological knowledge during childhood: Cognitive conflict or Tabula Rasa. Journal of Research in Science Teaching, 25, 185-199.
    Mintzes, Joe1 J., Wandersee, James H. Novak, Joseph D. (2001) Assessing understanding in biology. Journal of Biological Education, 35(3). 118.
    Novak, J. D. (1979). The reception learning paradigm. Journal of Researching Science Teaching, 16, 481-488.
    Osborne, R. J., & Gilbert J. K. (1979). Investigation of students understanding of basic physics concepts using an interview about-instances approach. Research In Science Education. 9, 85-93.
    Osborne, R. J., & Freyberg, P’(1985). Learning in science: The implications of children’s science. Auckland: Heinemann.
    Osborne,R. ,& Cosgrove,M.M.(1983).Children conceptions ofn the changes of state of water. Journal of Research in Science Teaching,20(9),825-838
    Vosniadou, S. & Brewer, W.F.(1992). Mental models of the earth A study of conceptual change in children, Cogitive psychology, 24, 5354-585.
    Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students misconceptions in science. International Journal of Science Education, 10, 159-169.
    Treagust, D.F. (1996). Concept mapping: A tool for improving science teaching and learning. In D. F. Treagust, R Duit, & B. J. Fraser (Eds), Improving Teaching and Learning in Science and Mathematics (pp. 32-43). New York: Teachers Collage Press.

    下載圖示
    QR CODE