研究生: |
黃建州 Chien-Chou Huang |
---|---|
論文名稱: |
應用時頻分析於建立運動員肺音訊號比較系統 Application of Time-Frequency Analysis of Athletes’ Lung Sound Signal System |
指導教授: |
陳美勇
Chen, Mei-Yung |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 肺音聽診 、時頻分析 、訊號影像化 、運動呼吸能力 |
英文關鍵詞: | Lung sound signal, Time-frequency analysis, Digital acoustic, Hilbert-Huang transform |
論文種類: | 學術論文 |
相關次數: | 點閱:518 下載:20 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胸部聽診一直以來都是醫生用來診斷病人肺部病症的主要方法,醫生藉由聽診器聽取肺部的聲音,來判別病人的健康狀況以及所得病症。但自從科技的進步,數位聽診漸漸取代了傳統聽診,成為新一代主流的技術。數位聽診具有多工處理,可記錄,以及可數據化演算之優點,使得聽診技術進入一個新的紀元。透過將肺音訊號影像化,以及使用科學上訊號分析的訊號法來分析肺音訊號,我們可以從肺音訊號得到比已往更多的訊息。本研究的目的為透過肺音擷取系統以及時頻分析方法來建立一套可以觀察不同運動種類運動員之肺音訊號之系統,並透過此系統來分析不同運動種類以及其肺音訊號之間的特色與關係。
首先使用一般聽診器與數位單指向性麥克風(鐵三角AT9904)做結合,製作成16個數位聽診器,並在人體背後肺部的位置布置麥克風陣列。透過USB音效卡以及Audio Stream Input Output(ASIO)驅動程式將肺音訊號錄製至電腦硬碟中並儲存。儲存在電腦中的肺音訊號,透過MATLAB以及Visual Signal軟體做訊號前處理以及時頻分析。本研究採取了三種時頻分析方法,分別為短時傅立葉轉換法(Short Time Fourier Transform,STFT)、Morlet小波轉換法(Morlet Wavelet Transform,Morlet WT)以及希爾伯.黃轉換法(Hilbert Huang Transform,HHT)。三種分析法各有其特色以及優點,但三種分析法中,本研究認為HHT最適合做為不同運動種類運動員之肺音差異之比較。熵(Entropy)之原理也用來作為呼吸氣流流速模型的參數之一。本研究透過以上方法來建立一個可以觀察不同運動員肺音特色之系統
In the diagnosis of the respiratory diseases, auscultation is a main method to diagnose and treat patients. Auscultation is a non-invasive and convenient diagnostic method. With the upgrading of computer hardware, Digital auscultation is gradually replacing traditional auscultation. Auscultation digitizing overcomes the shortcomings that are not sensitive and the subjectivity of the human’s ear. And auscultation also has the advantages that are multi-tasking, recordable and can be analyzed by computer. We can know a lot of information by image-based of lung sound signals. In the digital auscultation analysis, what method I use to analyze the lung signals which microphone recorded will affect the results of the experiment greatly. The purpose of this study is to build a system to observe the lung sounds of the different athletes by combination of lung sound recording system and time-frequency analysis. And find the lung sound characteristics and relationships of different athletes from the results.
First, I combine the stethoscopes and unidirectional microphones (Audio-Technica AT9904) as 16 digital stethoscopes, and arrange the digital stethoscope array on the back of human’s body. Through the USB sound cards and Audio Stream Input Output(ASIO) driver, the lung sound signals are recorded and saved in the hard disk. The signal would be processed and analyzed by MATLAB and Visual signal. The research has used three time-frequency analysis methods, they are Short Time Fourier Transform (STFT), Morlet Wavelet transform (Morlet WT) and Hilbert Huang transform (HHT). This research considers the result of HHT is the most suitable for lung sound signals analysis. Entropy is also used for respiratory air flow detection. This research build a system to observe the characterizes of lung sound signals from different athletes by the above method
[1] http://tw100.pixnet.net,新台灣之光-遠見雜誌24週年慶,上網日期:中華民國一百零一年。
[2] H. Polat, I. Guler, “A simple computer-based measurement and analysis system of pulmonary auscultation sounds,” Journal of Medical System, pp.665-667, 2004.
[3] J. E. Earis, B. M. G. Cheetham, “Current methods used for computerized respiratory sound analysis,” European Respiratory Review, pp.586-590, 2000.
[4] J. C. Chien, M. C. Huang, Y. D. Lin, F. C. Chong, “A study of heart sound and lung sound separation by independent component analysis technique,” Proceedings of the 28th Annual International Conference of The IEEE Engineering in Medicine and Biology Society, pp.5708-5711, 2006.
[5] Z. Moussavi, D. Flores, G. Thomas, “Heart sound cancellation based on multi-scale products and linear prediction,” Proceedings of the 26th Annual International Conference of The IEEE Engineering in Medicine and Biology Society, pp.3840-3843, 2004.
[6] X. Lu, M. Bahoura, “An integrated automated system for crackles extraction and classification,” Biomedical Signal Processing and Control, pp.244-254, 2008.
[7] M. T. Pourazad, Z. K. Mousavi, G. Thomas, “Heart sound cancellation from lung sound recordings using adaptive threshold and 2D interpolation in time-frequency domain”,. Proceedings of the 25th Annual International Conference of the IEEE in Engineering in Medicine and Biology Society, pp.2586-2589, 2003.
[8] A. Yadollahi, Z. K. Moussavi, “A robust method for heart sounds localization using lung sounds entropy”, IEEE Transactions on Biomedical Engineering, pp.497-502, 2006.
[9] R. L. Murphy, S.K. Holford, W. C. Knowler, “Visual lung sound characterization by time-expanded waveform analysis”, N Engl J Med 296, pp.968-971, 1977.
[10] J. Hoevers, R. Loudon, “Measuring crackles”, Chest 98, pp. 1240-1243, 1990.
[11] M. Mori, K. Kinoshita, H. Morinari, T. Shiraishi, S. Koike, S. Murao, “Waveform and spectral analysis of crackles”, Thorax 35 ,pp.843-850, 1980.
[12] M. Munakata, H. Ukita, I Doi, Y. Ohtsuka, Y. Masaki, Y. Homma, Y. Kawakami, “Spectral and waveform characteristics of fine and coarse crackles”, Thorax 46 , pp.654-757, 1991.
[13] A. Parkhi, M. Pawar, “Analysis of deformities in lung using short time fourier transform spectrogram analysis on lung sound”, International Conference on Computational Intelligence and Communication Networks (CICN), pp.177-181, 2011.
[14] S. Charleston-Villalobos, R. Gonzalez-Camarena, G. Chi-Lem and T. Aljama–Corrales, “Crackle sounds analysis by eprclmode decomposition.” Engineering in Medicine and Biology Magazine, IEEE, vol.26, no.1, pp.40-47, 2007.
[15] S. K. Chowdhury and A. K. Majumder, “Digital spectrum analysis of respiratory sound” IEEE Transactions on Biomedical Engineering, vol.28, no.11, pp.784-788,1981.
[16] I. Hossain , Z. Moussavi, “Finding the lung sound-flow relationship in normal and asthmatic subjects”, Proceedings of the 26th Annual International Conference of the IEEE EMBS, pp.3852-3855 , 2004.
[17] A. Yadollahi, Z. Moussavi, “A robust method for estimating respiratory flow using tracheal sounds entropy”, IEEE Transactions on Biomedical Engineering, pp.662-668, 2006.
[18] A. Yadollahi, Z. Moussavi, “Acoustical Respiratory Flow”, IEEE Engineering in Medicine and Biology Magazine, pp.56-61, 2007.
[19] 朱家瑜譯,「理學檢查與健康評估」,藝軒圖書出版社,2001。
[20] F. John, J. A. Murray, “Textbook of respiratory medicine,” Philadelphia: W. B. Saunders, 1994.
[21] M. Misiti, Y. Misiti, G. Oppenheim, J. M. Poggi, “Wavelet: a new tool for signal analysis,” The Math Works, Inc., 2010.
[22] 杜威廷,"週期性上肢運動資料之自動分析",朝陽科技大學工業工程與管理系,碩士論文,中華民國九十二年七月三十日畢業。
[23] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H.H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, Proceedings Royal Society London, Series A: Mathematical, Physical and Engineering Science, pp.903-995,1998.
[24] 謝志敏,"希爾伯特黃轉換簡介",Visual Signal相關資源下載,逸奇科技(http://www.ancad.com.tw ),中華民國九十六年七月十二日。
[25] 劉姿伶,"Recent Development of the Hilbert-Huang Transform"Term Paper Tutorial for Time Frequency Analysis and Wavelet Transform,2011.
[26] http://www.audio-technica.com, Audio-Technica Taiwan Co., Ltd.,2012.
[27] http://shenzhen-kexian-technology-co.tradenote.net/product/191100-LEAD- 3D-Sound.html, tradenote.net Corporation,2012.
[28] http://www.intopic.com.tw/showroom/view.php?C=5333900, INTOPIC INTERNATIONAL CO, LTD. , 2008.
[29] R. L. Murphy, ” Computerized multichannel lung sound analysis,” IEEE Engineering In Medicine And Biology Magazing,pp16-19,2007。
[30] 呂萍、閔一建、錢鐵群,"運動前後肺音訊號的提取與頻譜分析",陝西師範大學學報(自然科學版)第33卷第3期,pp.62-64,2005。
[31] 林培德,"呼吸肌訓練對男性大學生肺功能與最大攝氧量之影響",國立屏東教育大學體育學系,碩士論文,中華民國九十八年一月畢業。
[32] http://www.biopac.com/contact-microphone-specifications, BIOPAC System, Inc., 上網日期:中華民國九十九年。
[33] L. Steven, “Understanding Lung Sound,” Saunders, 2002.
[34] http://www.stethographics.com, stethographics, Inc., 上網日期:中華民國九十九年。
[35] http://www.ancad.com.tw, 逸奇科技 Inc., 上網日期:中華民國一百零一年。