研究生: |
陳英彰 Chen, Ying-Chang |
---|---|
論文名稱: |
石墨烯與二氧化鈦複合奈米機油應用於機車之性能研究 The Study of Using Graphene and Titanium Dioxide Hybrid Nano-Engine Oil on Performance of Motorcycle Engine |
指導教授: |
呂有豐
Lue, Yeou-Feng |
口試委員: |
呂有豐
Lue, Yeou-Feng 鄧敦平 Teng, Tun-Ping 莫懷恩 Mo, Huai-En |
口試日期: | 2024/05/20 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 石墨烯 、奈米流體 、複合潤滑油 、PM粒狀汙染物 |
英文關鍵詞: | Graphene, Nanofluid, Composite lubricant, Particulate Matter pollutants |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400716 |
論文種類: | 學術論文 |
相關次數: | 點閱:222 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用優異熱傳遞性奈米石墨烯(Gr)與耐磨耗性奈米二氧化鈦(TiO2),添加入SAE10W-40機油中以二階合成法製成(Graphene / Titanium dioxide hybrid nano-engine oil, GTHNO),期望複合奈米機油能夠具備兩種奈米材料特性。為確定GTHNO之性能是否達到優化效果,分別進行「基礎實驗」和「實車實驗」,其中基礎實驗:磨潤、黏度、導熱、比熱和沉降實驗等五項;實車實驗:ECE-40、定速、平路及爬坡實驗,並紀錄燃油消耗、廢氣排放和PM粒狀汙染物。
本研究GTHNO備製比例固定Gr濃度0.03 wt.%,TiO2濃度分為0.01、0.05、0.1、0.3及0.5 wt.%,經過基礎實驗評比0.3 wt.%為最佳濃度;磨潤實驗0.3 wt.%表現最為優異,驗證了添加過多或過少TiO2濃度有極大的影響。黏度實驗0.5 wt.%擁有較高的黏度,表示增加TiO2將會導致黏度升高。熱傳導實驗0.3 wt.%擁有最佳的熱穩定性質。比熱實驗0.5 wt.%最易受溫度變化。沉降實驗0.3 wt.%趨進於最不容易沉澱的濃度。GTHNO實車實驗中能夠有效改善CO 16 %和HC 35 %,最大程度降低有害氣體汙染;而行駛於市區下PM粒徑改善率約4.4 ~ 27.5 %之間。燃油消耗率各行車型態測試之間改善率約0 ~ 3 %之間。
In this study, nano-graphene (Gr) and nano titanium dioxide (TiO2) were added to SAE10W-40 engine oil through a two-step synthesis method to produce a Graphene/Titanium dioxide hybrid nano-engine oil (GTHNO) for incorporate excellent thermal conductivity and wear resistant. It was conducted to determine whether the performance of GTHNO reached optimal effectiveness for basic experiments (included tribology, viscosity, thermal conductivity, specific heat, and sedimentation) and on-road experiments (comprised ECE-40, constant speed, flat road, and hill climbing tests, while recording fuel consumption, exhaust emissions, and particulate matter pollutants).
The proportion of GTHN preparation was fixed with Gr concentration at 0.03 wt.%, and TiO2 concentration was varied at 0.01, 0.05, 0.1, 0.3 and 0.5 wt.%.According to the results of five basic experiments, the 0.3 wt.% TiO2 was selected as the optimal concentration. The 0.3 wt.% performance in the tribology experiment was the best, verifying that adding too much or too little TiO2 concentration has a significant impact. The viscosity test of 0.5 wt.% had a higher viscosity, indicating that increasing TiO2 will lead to an increase in viscosity. The thermal conductivity test revealed that 0.3 wt.% exhibited the best thermal stability. In the specific heat test, 0.5 wt.% was the most susceptible to temperature changes. The sedimentation experiment showed that 0.3 wt.% tended to have the least sedimentation. In the on-road experiments, GTHNO effectively improved CO by 16 % and HC by 35 %, minimizing harmful gas pollution; and in urban driving conditions, the improvement rates varied between 0 and 3 % improvement across different driving scenarios.
經濟部能源局,總體能源政策,能源轉型白皮書,取自:https://www.moeaboe.gov.tw/ECW/populace/content/Content.aspx?menu_id=13178&sub_menu_id=13180。
國家發展為員會,主要業務,經濟發展規劃,重點措施,台灣2050淨零排放路徑及策略總說明,取自:https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76。
R. Tonk, “The science and technology of using nano-materials in engine oil as a lubricant additives.” Materials Today: Proceedings, vol. 37, pp. 3475-3479, 2021.
ISO/TS 80004-4: (en), Nanotechnologies, Vocabulary, Part 4: Nanostructured materials, 2011.
Chemical & Engineering News: Cover Story - The World According To Rick, retrieved from: www.archive.org.
洪偉修,“世界上最薄的材料-石墨,98康熹化學報報”,第1~4頁,980047,2009年11月。
X. Chen and A. Selloni, Introduction: “Titanium Dioxide (TiO2) Nanomaterials”, Chemical Reviews, vol. 114, no. 19, pp. 9281-9282, 2014 DOI:10.1021/cr500422r.
A. Fujishima, & K. Honda, “Electrochemical photolysis of water at a semiconductor electrode.” nature, vol. 238, no. 5358, pp. 37-38, 1972.
K. Liu, M. Cao, A. Fujishima, & L. Jiang, “Bio-inspired titanium dioxide materials with special wettability and their applications.” Chemical reviews, vol. 114, no. 19, pp. 10044-10094, 2014.
R. Saidur, K. Y. Leong, & H. A. Mohammed, “A review on applications and challenges of nanofluids.” Renewable and sustainable energy reviews, vol. 15, no. 3, pp. 1646-1668, 2011.
布朗運動,維基百科,2023年8月17日。取自:https://zh.wikipedia.org/wiki/布朗運動。
凡德瓦力,維基百科,2023年8月24日。取自:https://en.wikipedia.org/wiki/Van_der_Waals_force#cite_note-7 Van der Waals force。
S. S Batsanov, “Van der Waals radii of elements.” Inorganic materials, vol. 37, no. 9, pp. 871-885, 2001.
W. Dai, B. Kheireddin, H. Gao, & H. Liang, “Roles of nanoparticles in oil lubrication.” Tribology International, vol. 102, pp. 88-98, 2016.
M. J. Kao, & C. R. Lin, “Evaluating the role of spherical titanium oxide nanoparticles in reducing friction between two pieces of cast iron.” Journal of Alloys and Compounds, vol. 483, no. 1-2, pp. 456-459, 2009.
H. Chang, Z. Y. Li, M. J. Kao, K. D. Huang, & H. M. Wu, “Tribological property of TiO2 nanolubricant on piston and cylinder surfaces.” Journal of Alloys and Compounds, vol. 495, no. 2, pp. 481-484, 2010.
R. K. Sabareesh, N. Gobinath, V. Sajith, S. Das, & C. B. Sobhan, “Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems–An experimental investigation.” international journal of refrigeration, vol. 35, no.7, pp. 1989-1996, 2012.
B. S. Shenoy, K. G. Binu, R. Pai, D. S. Rao, & R. S. Pai, “Effect of nanoparticles additives on the performance of an externally adjustable fluid film bearing.” Tribology International, vol. 45, no. 1, pp.38-42, 2012.
S. Ingole, A. Charanpahari, A. Kakade, S. S. Umare, D. V. Bhatt, & J. Menghani, “Tribological behavior of nano TiO2 as an additive in base oil.” Wear, vol. 301, no.1-2, pp. 776-785, 2013.
F. Ilie, & C. Covaliu, “Tribological properties of the lubricant containing titanium dioxide nanoparticles as an additive.” Lubricants, vol. 4, no. 2, pp. 12, 2016.
M. Laad, & V. K. S. Jatti, “Titanium oxide nanoparticles as additives in engine oil.” Journal of King Saud University-Engineering Sciences, vol. 30, no. 2, pp. 116-122, 2018.
S. ShashaVali, & A. Patil, “Experimental investigation of tribological properties of TiO2 nanoparticles in engine oil.” Materials Today:Proceedings, vol. 46, pp. 883-889, 2021.
C. Birleanu, M. Pustan, M. Cioaza, A. Molea, F. Popa, & G. Contiu, “Effect of TiO2 nanoparticles on the tribological properties of lubricating oil:an experimental investigation.” Scientific Reports, vol. 12, no. 1, pp. 5201, 2022.
H. D. Huang, J. P. Tu, L. P. Gan, & C. Z. Li, “An investigation on tribological properties of graphite nanosheets as oil additive.” Wear, vol. 261, no. 2, pp. 140-144, 2006.
J. Lin, L. Wang, & G. Chen, “Modification of graphene platelets and their tribological properties as a lubricant additive.” Tribology letters, vol. 41, pp. 209-215, 2011.
Z. J. Zhang, D. Simionesie, & C. Schaschke, “Graphite and hybrid nanomaterials as lubricant additives.” Lubricants, vol. 2, no. 2, pp. 44-65, 2014.
M. K. A. Ali, H. Xianjun, M. A. Abdelkareem, M. Gulzar, & A. H. Elsheikh, “Novel approach of the graphene nanolubricant for energy saving via anti-friction/wear in automobile engines.” Tribology International, vol. 124, pp. 209-229, 2018.
M. J. Guimarey, M. J. Comunas, E. R. Lopez, A. Amigo, & J. Fernandez, “Thermophysical properties of polyalphaolefin oil modified with nanoadditives.” The Journal of Chemical Thermodynamics, vol. 131, pp. 192-205, 2019.
P. Wu, X. Chen, C. Zhang, J. Zhang, J. Luo, & J. Zhang, “Modified graphene as novel lubricating additive with high dispersion stability in oil.” Friction, vol. 9, pp. 143-154, 2021.
J. M. L. del Río, M. J. Guimarey, J. I. Prado, L. Lugo, E. R. López, & M. J. Comuñas, “Improving the tribological performance of a biodegradable lubricant adding graphene nanoplatelets as additives.” Journal of Molecular Liquids, vol. 345, pp. 117797, 2022.
A. R. Marlinda, G. S. H. Thien, M. Shahid, T. Y. Ling, A. Hashem, K. Y. Chan, & M. R. Johan, “Graphene as a Lubricant Additive for Reducing Friction and Wear in Its Liquid-Based Form.” Lubricants, vol. 11, no.1, pp. 29, 2023.
K. R. Banavathu, K. R. R. Chebattina, V. Srinivas, C. V. Moorthy, & G. Pullagura, “Physico-chemical and tribological properties of commercial oil–bio-lubricant mixtures dispersed with graphene nanoplatelets.” RSC advances, vol. 13, no. 26, pp. 17575-17586, 2023.
V. T. Wadi, Ö. Özmen, & M. B. Karamış, “Experimental analysis and modeling of viscosity and thermal conductivity of GNPs/SAE 5W40 nanolubricant.” Industrial Lubrication and Tribology, vol. 73, no.1, pp. 74-81, 2021.
J. Chen, “Tribological properties of polytetrafluoroethylene, nano-titanium dioxide, and nano-silicon dioxide as additives in mixed oil-based titanium complex grease.” Tribology letters, vol. 38, pp. 217-224, 2010.
T. Luo, X. Wei, H. Zhao, G. Cai, & X. Zheng, “Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives.” Ceramics International, vol. 40, no.7, pp.10103-10109, 2014.
M. K. A. Ali, H., Mai, L. Xianjun, C. Qingping, R. F. Turkson, & C. Bicheng, “Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives.” Tribology International, vol. 103, pp. 540-554, 2016.
M. H. Esfe, H. Rostamian, M. R. Sarlak, M. Rejvani, & A. Alirezaie, “Rheological behavior characteristics of TiO2-MWCNT/10w-40 hybrid nano-oil affected by temperature, concentration and shear rate:an experimental study and a neural network simulating.” Physica E:Low-dimensional Systems and Nanostructures, vol. 94, pp. 231-240, 2017.
R. S. Kumar, & T. Sharma, “Stability and rheological properties of nanofluids stabilized by SiO2 nanoparticles and SiO2-TiO2 nanocomposites for oilfield applications.” Colloids and Surfaces A:Physicochemical and Engineering Aspects, vol. 539, pp. 171-183, 2018.
M. Niu, & J. Qu, “Tribological properties of nano-graphite as an additive in mixed oil-based titanium complex grease.” RSC advances, vol. 8, no. 73, pp. 42133-42144, 2018.
W. Alghani, M. S. Ab Karim, S. Bagheri, N. A. M. Amran, & M. Gulzar, “Enhancing the tribological behavior of lubricating oil by adding TiO2, graphene, and TiO2/graphene nanoparticles.” Tribology Transactions, vol. 62, no. 3, pp. 452-463, 2019.
J. Patel, & A. Kiani, “Tribological capabilities of graphene and titanium dioxide nano additives in solid and liquid base lubricants.” Applied Sciences, vol. 9, no. 8, pp. 1629, 2019.
M. Niu, J. Qu, & L. Gu, “Synthesis of titanium complex grease and effects of graphene on its tribological properties.” Tribology International, vol. 140, pp. 105815, 2019.
H. Pourpasha, S. Zeinali Heris, & Y. Mohammadfam, “Comparison between multi-walled carbon nanotubes and titanium dioxide nanoparticles as additives on performance of turbine meter oil nano lubricant.” Scientific Reports, vol. 11, no. 1, pp. 11064, 2021.
Z. Zhao, X. Fan, W. Li, Y. He, Q. Sun, & M. Zhu, “Multi-layer interface lubrication of in-situ synthesized titanium dioxide/reduced graphene oxide nanocomposites.” Applied Surface Science, vol. 604, pp. 154571, 2022.
Y. K. Wei, L. Y. Dai, H. C. Zhong, H. F. Liao, & X. B. Hou, “Preparation and Tribological Properties of a Multilayer Graphene-Reinforced TiO2 Composite Nanolubricant Additive.” ACS omega, vol. 7, no. 46, pp. 42242-42255, 2022.
M. F. Sgroi, M. Asti, F. Gili, F. A. Deorsola, S. Bensaid, D. Fino, ... & F. Dassenoy, “Engine bench and road testing of an engine oil containing MoS2 particles as nano-additive for friction reduction.” Tribology International, vol. 105, pp. 317-325, 2017.
M. K. A. Ali, H. Xianjun, M. A. Abdelkareem, M. Gulzar, & A. H. Elsheikh, “Novel approach of the graphene nanolubricant for energy saving via anti-friction/wear in automobile engines.” Tribology International, vol. 124, pp. 209-229, 2018.
G. Jian-wei, W. Qiong, & M. Zhao, “Exhaust emissions of diesel engines with nano-copper additives.” Applied Nanoscience, vol. 10, pp. 1045-1052, 2020.
M. K. A. Ali, & H. Xianjun, “Improving the heat transfer capability and thermal stability of vehicle engine oils using Al2O3/TiO2 nanomaterials.” Powder Technology, vol. 363, pp. 48-58, 2020.
M. Hatami, M. Hasanpour, & D. Jing, “Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines:Part II:Nano-lubricants.” Journal of Molecular Liquids, vol. 319, pp. 114156, 2020.
行政院經濟部標準檢驗局,標準總號:CNS3105,資料取自:https://www.cnsonline.com.tw/,2009年。
行政院經濟部能源局,車輛油耗指南,資料取自:https://auto.itri.org.tw/index.aspx,2019年。
行政院環境保護署,主管法規查詢系統-機車廢氣排放污染測試方法及程序,資料取自:https://oaout.epa.gov.tw/law/index.aspx,2019年。