簡易檢索 / 詳目顯示

研究生: 林倉毅
Chang Yi Lin
論文名稱: 利用單層聚苯乙烯奈米球於矽基太陽能電池抗反射層之研究
Study of antireflection layer of silicon solar cell by using monolayer polystyrene nano particle
指導教授: 蔡定平
Tsai, Din-Ping
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 76
中文關鍵詞: 太陽能電池單晶矽太陽能電池多晶矽太陽能電池非晶矽太陽能電池薄膜太陽能電池反射定律
論文種類: 學術論文
相關次數: 點閱:207下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前太陽能電池在太陽光入射電池的表面時,會造成約40%以上光反射,其主要反射原因是因外部電極的大小會阻擋光的行進路徑,另外抗反射層的尺寸大小或材料的匹配也是影響光反射的原因之一。然而在1967年學者Bernhard利用電子顯微鏡在蛾眼的角膜表面發現約有200nm大小的週期性凸起的結構,此一結構會直接改變光進入空氣與角膜間的反射係數,可增加光的穿透性並降低其反射率。因此本論文研究將藉由蛾眼效應(Moth eye effect)的方式來製作矽基抗反射結構層。
      此實驗是將聚苯乙烯奈米顆粒球直接鋪設於矽基板上,透過反應式離子蝕刻機(Reactive Ion Etching)做乾式蝕刻,並利用氧氣氣體蝕刻控制奈米顆粒球的尺寸大小,再利用四氟化碳氣體蝕刻控制矽基板之深度後,以製作出矽基抗反射層結構。製作完成之矽基抗反射層結構經由光譜儀量測其反射率,量測波長範圍為400nm至800nm。由反射光譜可得知,不含抗反射層結構之平面矽基板光反射量約為40%;製作抗反射層結構後,其光反射量最多可降低至8.8%,如此可達到抗反射的效果。以此方法製作之抗反射層結構具有較低成本、製作簡易、設備要求低的優點,並冀望可應用於矽晶太陽能電池上,並改善矽基抗反射層結構及改善太陽能電池整體之效率。

    Recently, the solar cell will cause more than 40% reflection of light. The main reason for reflection is due to the size of the external electrodes. The other reason is the size of anti-reflection layer and material match.
      In 1967, Bernhard found out that there are about 200nm periodic uplift structure on the corneal surface of moth eyes. This structure will directly change the reflection coefficient between the corneal and the air. Besides, the penetration of light will increase and the reflectivity will decrease. This study will produce Silicon-based anti-reflection structure layer by using Moth eye effect.
      The procedure of the experiment are laying single layer of the polystyrene nano-particles on the Silicon-based substrate. Second, the size of nano-particles are controlled by dry etching using oxygen and the depth of silicon substrate is controlled by dry etching using CF4. Those dry etching are using “Reactive Ion Etching”. After the procedure, we could get the Silicon-based anti-reflection layer structure.
      We measured the reflection spectrum of the Silicon-based anti-reflection layer structure. The range of wavelength is 400nm to 800nm. The reflectivity of light compare to the sample with and without anti-reflection layer is about 40% and 8.8%. The result of reflection spectrum shows that the anti-reflection layer could increase the effect of anti-reflection.
      The advantages of this method are cost down, simple production, lower requirement of experiment device. It could used in the crystal silicon solar cells to improve the anti-reflection layer structure and increase the efficiency of the solar cells.

    致謝------------------------------------------------------I 中文摘要--------------------------------------------------II 英文摘要-------------------------------------------------III 目錄------------------------------------------------------V 圖目錄--------------------------------------------------VIII 第一章:緒論 1-1 前言-------------------------------------------------1 1-2 各種太陽能電池介紹-------------------------------------4 1-2-1 單晶矽太陽能電池-----------------------------------4 1-2-2 多晶矽太陽能電池-----------------------------------5 1-2-3 非晶矽太陽能電池-----------------------------------5 1-2-4 III-V族太陽能電池----------------------------------6 1-2-5 II-VI族太陽能電池----------------------------------7 1-2-6 聚光型太陽能電池---------------------------------7 1-2-7 球狀型太陽能電池-------------------------------------8 1-2-8 染料敏化太陽能電池--------------------------------8 1-3 研究動機及目的---------------------------------------9 第二章:理論基礎與實驗儀器 2-1 太陽能電池原理---------------------------------------11 2-2 反射定律及折射定律------------------------------------12 2-3 有效介質理論-----------------------------------------14 2-4 各種微影術介紹---------------------------------------16 2-5 奈米球微影術-----------------------------------------18 2-6 掃描式電子顯微鏡及濺鍍機-------------------------------20 2-7 原子力顯微儀----------------------------------------21 2-8 光譜儀----------------------------------------------23 第三章:矽基抗反射層結構製作及反射率量測 3-1 鋪聚苯乙烯奈米球方法------------------------------------25 3-1-1 基板清洗------------------------------------------25 3-1-2 聚苯乙烯奈米球溶液稀釋與鋪設------------------------25 3-2 蝕刻聚苯乙烯奈米球速率----------------------------------26 3-2-1 反應式離子蝕刻機----------------------------------26 3-2-2 實驗結果------------------------------------------28 3-3 蝕刻矽基板速率-----------------------------------------32 3-3-1 基板清洗--------------------------------------------32 3-3-2 光阻塗佈-----------------------------------------32 3-3-3 軟烤---------------------------------------------33 3-3-4 曝光機-------------------------------------------33 3-3-5 曝後烤-------------------------------------------34 3-3-6 顯影及蝕刻----------------------------------------34 3-3-7 表面輪廓儀----------------------------------------34 3-3-8 實驗結果----------------------------------------35 3-4 製作矽基抗反射層結構------------------------------------37 3-5 矽基抗反射層結構之反射率量測-----------------------------47 第四章:結果與討論------------------------------------------59 參考文獻--------------------------------------------------60

    [1] 鄭名山,”太陽能發電簡介”物理雙月刊,第廿九卷第三期 (2007)
    [2] Shultz O, Glunz SW, Goldschmidt JC, Lautenschlager H, Leimenstoll A, Scheiderlochner E, and Willeke GP, ”Thermal oxidation processes for high-efficiency multicrystalline silicon solar cells ”19th European  Photovoltaic Solar Energy Conference, Paris, June, 2004.
    [3] J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, A. Shah, Potential of amorphous and microcrystalline silicon solar cells ” Thin Solid Films. 2004; 451-452: pp. 518-524.
    [4] Wu X, Keane JC, Dhere RG, DeHart C, Duda A, Gessert TA, Asher S, Levi DH, Sheldon P. ”16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell”Conference Proceedings, 17thEuropean Photovoltaic Solar Energy Conference, Munich. October 2001; 22-26: pp. 955-1000.
    [5] Venkatasubramanian R, O’Quinn BC, Hills JS, Sharps PR, Timmons  ML, Hutchby JA, Field H, Ahrenjiel A, Keyes B, ”18.2% (AM 1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge Substrate” Conference Record,25th IEEE Photovoltaic Specialists Conference, Washingtion, May 1997; pp. 31-36.
    [6] Keavney CJ, Haven VE, Vernon SM, ”Emitter structures in MOCVD InP solar cells ” Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May, 1990; pp. 141-144.
    [7] 曾令勳”三五族太陽能電池之模型建立與改善效率之方法”國立東
      華大學碩士論文(2006)
    [8] 葉上平”用於III-V族太陽能電池之高效率且均勻化聚光鏡之研   究”國立中央大學碩士論文(2007)
    [9] 陳英豪”單晶矽薄膜太陽電池之結構設計與粗糙化結構研究”,國 立雲林科技大學碩士論文(2003)
    [10] 劉修宏 ”高效率高分子太陽能電池之研究”,國立成功大學碩士     論文(2006)
    [11] Bernhard, C. G., ”Structural and functional adaptation in a visual system”, Endeavour, Vol. 26, 79 (1967).
    [12] Hadobás K., Kirsch S., Carl A., Acet M. and Wassermann E.  F.,”Reflection properties of nanostructure-arrayed silicon surfaces”
    [13] 吳文獻”奈米球微影術於奈米製程技術之應用與發展 ”, 國立成   
      功大學碩士論文(2006)
    [14] 徐昭業”以奈米球微影術製造鎳鐵陣列之特性研究”,國立中正大學碩士論文(2003)
    [15] Guozhong Cao; Nanostructures & Nanomaterials
    [16] 杜弘民,”電子束微影製程參數最佳化於抗反射結構陣列製作之研究",國立台灣科技大學碩士論文(2003)
    [17] 鄭凱元”次微米週期性結構之嚴格繞射光學模擬與設計 ”,國立中央大學碩士論文(2005)
    [18] L. Rayleigh, ”On the influence of obstacles arranged in rectangularorder upon the properties of a medium ” Philos. Mag. 34,  481-502(1892).
    [19] J. C. Maxwell Garnett, ”On colours in metal glasses, in metallicfilms, and in metallic solutions ” Philos. Soc. London 205, 237-287(1906).
    [20] S. M. Rytov, ”The electromagnetic properties of finely layered Medium ”Sov. Phys. JETP 2, 466-475 (1956).
    [21] 蔡志昌,”光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究”,國立中央大學碩士論文(2001)
    [22] 余政峰,”奈米金屬薄膜之表面電漿量子的近場光學量測"國立台灣海洋大學碩士論文 (2003)
    [23] 張宏偉”雷射光致奈米記錄點於鍺銻碲相變化薄膜之特性研究"
    國立台灣師範大學碩士論文 (2007)
    [24] B. J.-Y. Tan,C.-H. Sow, K.-Y. Lim, F.-C. CheongG.-L. Chong, A. T.-S. Wee, and C.-K. Ong”Fabrication of a Two-Dimensional Periodic Non-Close-Packed Array of Polystyrene Particles” J. Phys. Chem. B,  108, 18575-18579(2004)
    [25] 吳志偉”反應離子蝕刻機使用指導書” 國科會北區微機電系統研究中心
    [26] 郭建億”深次微米世代微影術底部抗反射層與奈米粒子選區成長 之研究”,國立清華大學碩士論文(2003)
    [27] 吳志偉”Surface Profiler 使用指導書”國科會北區微機電系統     
      研究中心
    [28] S.O.Kasap, Optoelectronics (prentice Hall),(1999)
    [29] Yi-Fan Huang, Surojit Chattopadhyay, Yi-Jun Jen, Cheng-Yu Peng, Tze-An Liu, Yu-Kuei Hsu, Ci-Ling Pan, Hung-Chun Lo, Chih-Hsun Hsu, Yuan-Huei Chang, Chih-Shan Lee, Kuei-Hsien Chen and Li-Chyong Chen, “Improved broadband and quasiomnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology 2, 770 (2007).
    [30] S. J. Wilson, and M. C. Hutley, “The optical-properties of moth eye antireflection surfaces,” Optica Acta 29, 993 (1982).
    [31] P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8, 53 (1997).
    [32] Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21, 2874 (2003).
    [33] C. Lee, Sam Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro sun sensor,” Nano Lett. 5, 2438 (2005).
    [34] K.-H. Chen, J. S. Hwang, D. Das, H. C. Lo, and L.-C. Chen, “Method of forming a nanotip array in a substrate by forming masks on portions of the substrate and etching the unmasked portions,” US patent 6,960,528 B2 (2005).
    [35] C. H. Hsu, C. F. Chen, H. C. Lo, D. Das, J. Tsai, J. S. Hwang, L. C.Chen and K. H. Chen, “Generally applicable self-masked dry etching technique for nanotip arrays fabrication,” Nano Lett. 4, 471 (2004).
    [36] 楊琬琳”以奈米壓印技術製作次波長光柵”,國立交通大學碩士論文 (2007)

    無法下載圖示 本全文未授權公開
    QR CODE