簡易檢索 / 詳目顯示

研究生: 劉家凱
Liu, Chia-Kai
論文名稱: K頻帶互補式金氧半功率放大器設計
Design of K-band CMOS Power Amplifiers
指導教授: 蔡政翰
Tsai, Jen-Han
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 93
中文關鍵詞: K頻段功率放大器變壓器互補式金屬氧化半導體功率合成技術
英文關鍵詞: K-band, power amplifier, transformer, CMOS, power combining techniques
論文種類: 學術論文
相關次數: 點閱:277下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一個電路為變壓器功率結合技術之K頻帶功率放大器,採用半圈變壓器 (Half-turn Transformer)實現功率結合與阻抗轉換以達到節省面積,量測結果在23.5 GHz時,增益為12 dB,飽和輸出功率(P_sat)為22.5 dBm,1dB增益壓縮輸出功率(OP_1dB)為18.1 dBm,最高功率輔助效率(PAE)為21.8%,晶片佈局面積為0.29 mm^2。
    第二個電路為變壓器電流結合技術之K頻帶功率放大器,延續第一個設計之功率放大器,運用變壓器電流結合技術(Current Combining Transformer)來提升輸出功率,將功率放大單元直接並聯在進行匹配,而為了要提高增益,採用兩級功率放大器進行設計,量測結果在23 GHz時,增益為19.5 dB,飽和輸出功率(P_sat)為24.9 dBm,1 dB增益壓縮輸出功率(OP_1dB)為20.6 dBm,最高功率輔助效率(PAE)為17.0%,晶片佈局面積為0.97 mm^2。

    The first circuit is K-band power amplifier with transformer combining technique which uses half-turn transformer to implement power combining and impedance transformations, and to reduce size of chip. The PA achieves measured small-signal gain ("S" _"21" ) of 12 dB and maximum saturation output power ("P" _"sat" ) of 22.5 dBm, the measured output 1-dB compression point (〖"OP" 〗_"1dB" ) of 18.1 dBm and peak power-added efficiency (PAE) is 21.8 % at 23.5 GHz. The chip area is 0.29 mm^2.
    Recall that in first design, the second circuit is power amplifier using current combining transformer technique to increase output power. In order to reach higher gain, this thesis use 2-stage power amplifier design. The PA achieves measured "S" _"21" of 19.5 dB and "P" _"sat" of 24.9 dBm, the 〖"OP" 〗_"1dB" of 20.6 dBm and PAE of 17 % at 23 GHz. The chip area including is 0.97 mm^2.

    摘 要 i ABSTRACT iii 誌謝 v 目 錄 vii 圖 目 錄 xi 表 目 錄 xvii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 研究成果 4 1.4 論文架構 4 第二章 功率放大器之介紹 7 2.1 概述 7 2.2 功率放大器之重要參數 8 2.2.1 功率(Power) 8 2.2.2 效率(Efficiency) 9 2.2.3 線性度(Linearity) 9 2.3 功率放大器種類 15 2.3.1 A類(Class A)功率放大器 16 2.3.2 B類(Class B)功率放大器 17 2.3.3 AB類(Class AB)功率放大器 18 2.3.4 C類(Class C)功率放大器 19 第三章 Half-turn變壓器功率結合技術之K頻帶功率放大器 21 3.1 簡介 21 3.2 變壓器功率結合技術之K頻帶功率放大器設計 22 3.2.1偏壓分析與選擇 22 3.2.2組態選擇 24 3.2.3電晶體元件尺寸分析及選擇 25 3.2.4 變壓器原理 28 3.2.5 輸出匹配網路設計 29 3.2.6 輸入匹配網路設計 41 3.2.7 旁路電路設計 47 3.3 模擬結果 49 3.4 量測結果 52 3.5 問題與討論 58 3.5.1 相位差問題 58 3.6 總結 59 第四章 變壓器電流結合技術之K頻帶功率放大器 61 4.1 簡介 61 4.2 變壓器電流結合技術之K頻帶功率放大器設計 62 4.2.1 變壓器電流結合技術效率 62 4.2.2 輸出匹配網路設計 64 4.2.3 級間匹配網路設計 71 4.3 模擬結果 73 4.4 量測結果 78 4.6 總結 84 第五章 結論 87 參 考 文 獻 89 自傳 93 學術成就 93

    [1] J.-L. Kuo, Z.-M. Tsai, and H. Wang, “A 19.1-dBm Fully-Integrated 24 GHz Power Amplifier Using 0.18-μm CMOS Technology,” European Conference on Wireless Technology (EuWiT), Amsterdam, Oct. 2008, pp. 234-237.
    [2] H. Portela, V. Subramanian, and G. Boeck, “Fully integrated high efficiency K-band PA in 0.18 μm CMOS Technology,” SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Belem, Nov. 2009, pp. 393-396.
    [3] J.-L. Kuo, and H. Wang, “A 24 GHz CMOS Power Amplifier Using Reversed Body Bias Technique to Improve Linearity and Power Added Efficiency,” IEEE MTT-S International Microwave Symposium Digest (MTT), Montreal, June 2012, pp. 1-3.
    [4] Y.-N. Jen, J.-H. Tsai, C.-T. Peng, and T.-W. Huang, “A 20 to 24 GHz +16.8 dBm Fully Integrated Power Amplifier Using 0.18μm CMOS Process,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 1, pp. 42-44, Jan. 2009.
    [5] P.-C. Huang, L.-L. Kuo, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A 22-dBm 24-GHz PowerAmplifier Using O.18-μm CMOS Technology,” IEEE MTT-S International Microwave Symposium Digest (MTT), Anaheim, May 2010, pp. 248-251.
    [6] C.-C. Hung, J.-L. Kuo, K.-Y. Lin, and H. Wang, “A 22.5-dB Gain, 20.1-dBm Output Power K-band Power Amplifier in 0.18-μm CMOS,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC) Symposium, Anaheim, May 2010, pp. 557-560.
    [7] Y. Kawano, A. Mineyama, T. Suzuki, M. Sato, T. Hirose, and K. Joshin, “A Fully-Integrated K-band CMOS Power Amplifier with Psat of 23.8 dBm and PAE of 25.1 %,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium , Baltimore, June 2011, pp. 1-4.
    [8] Y.-C. Liu, C.-T. Chan, and S.-H. Hsu, “A K-Band Power Amplifier with Adaptive Bias in 90-nm CMOS,” European Microwave Conference (EuMC), Rome, Oct. 2014, pp. 1376-1379
    [9] C.-C. Kuo, Y.-H. Lin, H.-C. Lu, and H. Wang, “A K-band Compact Fully Integrated Transformer Power Amplifier in 0.18-μm CMOS,” Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, Nov. 2013, pp. 597-599
    [10] J.-F. Yeh, Y.-F. Hsiao, J.-H. Tsai, and T.-W. Huang, “MMW Ultra-Compact N-Way Transformer PAs Using Bowtie-Radial Architecture in 65-nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 7, pp. 460-462, July 2015.
    [11] J.-H. Chen, S. R. Helmi, R. Azadegan, F. Aryanfar, and S. Mohammadi, “A Broadband Stacked Power Amplifier in 45-nm CMOS SOI Technology,” IEEE Journal of Solid-State Circuits, vol. 48, no. 11, pp.2775-2784, Nov. 2013.

    [12] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer─A new power-combining and impedance-transformation technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 316-331, Jan. 2002.
    [13] K.- H. An1, Y. Kim, O. Lee, K.- S. Yang, H. Kim, W.-Y. Woo, J.- J. Chang, C.-H. Lee, H. Kim, and J. Laskar, “A Monolithic Voltage-Boosting Parallel-Primary Transformer Structures for Fully Integrated CMOS Power Amplifier Design,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Honolulu, June 2007, pp.419-422
    [14] J.-F. Yeh, L.-L. J.-H. Tsai, and T.-W. Huang, “A 60-GHz Power Amplifier Design Using Dual-Radial Symmetric Architecture in 90-nm Low-Power CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol.61, no.3, pp.1280-1290, March 2013.
    [15] J. Kim, W. Kim, H. Jeon, Y.-Y. Huang, Y.-C. Yoon, H. Kim, C.-H. Lee, and K. T. Kornegay, “A Fully-Integrated High-Power Linear CMOS Power Amplifier With a Parallel-Series Combining Transformer,” IEEE Journal of Solid-State Circuits, vol.47, no.3, pp.599-61, Feb. 2012.
    [16] C.-W. Kuo, H.-K. Chiou, and H.-Y. Chung, “An 18 to 33 GHz Fully-Integrated Darlington Power Amplifier With Guanella-Type Transmission-Line Transformers in 0.18-μm CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 23, pp. 668-670, Oct. 2014.
    [17] B. Razavi, RF Microelectronics, 2nd edition. Upper Saddle River, NJ: Prentic Hall, 2012.
    [18] A. Komijani, A. Natarajan, and A. Hajimiri, “A 24-GHz, +14.5-dBm Fully Integrated Power Amplifier in 0.18-μm CMOS,” IEEE Journal of Solid-State Circuits, vol.40, no.9, pp.1901-1908, Sept. 2005.
    [19] J.-W. Lee and J. Lin, “Series-Biased CMOS Power Amplifiers Operating at High Voltage for 24 GHz Radar Applications,” International SoC Design Conference (ISOCC), Seoul, Nov. 2010, pp.360-363.
    [20] A. Natarajan, A. Komijani, and A. Hajimiri, “A Fully Integrated 24-GHz Phased-Array Transmitter in CMOS,” International SoC Design Conference (ISOCC), IEEE Journal of Solid-State Circuits, vol.40, no.12, pp.2502-2514, Dec. 2005.
    [21] A. Vasylyev, P. Weger and W. Simbu¨rger, “Ultra-broadband 20.5–31 GHz monolithically-integrated CMOS power amplifier,” International SoC Design Conference (ISOCC), Electronics Letters, vol.41, no.23, pp.1280-1281, Nov. 2005.
    [22] C.-Y. Wu, S.-W. Hsu, and W.-C. Wang, “A 24-GHz CMOS Current-Mode Power Amplifier with High PAE and Output Power,” IEEE International Symposium on Circuits and Systems(ISCAS), New Orleans, May 2007, pp.2866-2869.

    [23] J.-F. Yeh, J.-H. Tsai, and T.-W. Huang, “A Multi-mode 60-GHz Power Amplifier with a Novel Power Combination Technique,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Montreal, June 2012, pp. 61-64.
    [24] K.W. Kobayashi, A.K. Oki, and L.-W. Yang, A. Gutierrez-Aitken, P.Chin, Don Sawdai, W. Okamura, J. Lester, E. Kaneshiro, “A 0.5 Watt-40 % PAE InP Double Heterojunction Bipolar Transistor K-band MMIC Power Amplifier,” International Indium Phosphide and Related Materials, Williamsburg, May 2000, pp. 250-253.

    下載圖示
    QR CODE