簡易檢索 / 詳目顯示

研究生: 劉幸怡
Liu, Xin-Yi
論文名稱: 兩性共聚物: 合成與應用
Amphoteric Copolymers: Synthesis and Applications
指導教授: 許貫中
Hsu, Kung-Chung
呂家榮
Lu, Chia-Jung
口試委員: 許貫中
Hsu, Kung-Chung
呂家榮
Lu, Chia-Jung
楊啟榮
Yang, Chii-Rong
沈永年
Sheen, Yeong-Nain
王曄
Wang, Yeh
李文福
Lee, Wen-Fu
口試日期: 2022/07/04
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 121
中文關鍵詞: 兩性離子型共聚物石墨烯環氧樹脂分散水膠吸水率砂漿抗壓強度矽藻土
英文關鍵詞: amphoteric, compolymer, graphene, dispersion, hydrogel, diatomaceous earth, morta, compressive strength, epoxy
研究方法: 實驗設計法準實驗設計法次級資料分析比較研究觀察研究文件分析法內容分析法
DOI URL: http://doi.org/10.6345/NTNU202201286
論文種類: 學術論文
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究分為三個主體,這三個主題分別為共聚物分散劑合成應用於氧化石墨烯與環氧樹脂複合材料熱傳性、兩性離子分散劑的合成及應用於砂漿中氧化石墨烯的分散、兩性離子水膠/矽藻土複合材料的合成及應用於砂漿中。
    第一個主題為合成一種共聚物Poly (GMA-co-Eu),選用甲基丙烯酸缩水甘油酯(Glycidyl methacrylate)和烯丙基甲氧基苯酚(Eugenol)為單體,偶氮二異丁腈(AIBN)為起始劑,經自由基反應利用不同單體比例和起始劑濃度聚合成共聚物分散劑P(GMA/Eu)。經由FTIR及NMR光譜分析確認其化學結構。利用Hummers法將石墨烯氧化成氧化石墨烯,並經由FTIR和RAMAN光譜確認。接著探討溶劑、共聚物添加量等對於氧化石墨烯/環氧樹脂(GO/Epoxy)複合材料的熱傳性影響影響。利用SEM觀察氧化石墨烯在環氧樹脂裡的分散性。比較添加不同PGE和PVP,TX100對於氧化石墨烯/環氧樹脂複合材料的熱傳性。實驗結果顯示利用Hummers法將石墨烯氧化成氧化石墨烯,並經由FTIR和Raman光譜確認。在合成的5個PGE中,以PGE3 (GMA/Eu=2, Mn=6.7×103)對GO的分散效果最好。在含6% PGE、10wt% GOA的GO/Epoxy複合材料K值為3.32 W/mK,相較於沒有添加分散劑含10wt% GOA的複合材料K值(=2.62 W/mK)提升了26%;在含6% PGE、20wt% GOA的GO/Epoxy複合材料K值為5.02 W/mK,相較於沒有添加分散劑含20wt% GOA的複合材料K值(=2.93 W/mK)提升了71%。添加PVP和TX100,也能促進GO的分散而提升所得GO/Epoxy複合材料的K值。添加相同劑量的5個PGE PGE所得的複合材料的K值都高於添加PVP者,顯示PGE對GO的分散效果優於PVP。
    第二個主題為合成一種兩性離子型羧酸型共聚物:丙烯醯胺-(1-(4-(3-((羧甲基)二甲基氨基)丙基氨基)-4-氧代丁-2-烯酸二鈉)) Poly(AM-co-CDP) (PAC),首先使用馬來酸酐和N,N-二甲基-1,3-丙二胺,及氯醋酸鈉反應得到單體1-(4-(3-((羧甲基)二甲基氨基)丙基氨基)-4-氧代丁-2-烯酸二鈉)(CDP),硫酸銨(APS)為起始劑,與丙烯醯胺(AM)經由自由基聚合反應合成得到兩性離子型共聚物Poly(AM-co-CDP)。使用FTIR和1H-NMR光譜鑑定其結構,利用GPC測定其分子量,將PAC加入含氧化石墨烯的人工孔隙溶液中,透過沉降體積、粒徑分布、界達電位與黏度實驗,探討PAC對於人工孔隙溶液中GO的分散效果。將PAC/GO添加在水泥砂漿中,測試砂漿試體的抗壓強度與抗彎強度並與商用氧化石墨烯GOB和商用分散劑PC比較。實驗結果顯示: 經由沉降體積、粒徑分布、界達電位和黏度實驗觀察,隨著PAC添加量的增加,GO人工孔隙溶液的黏度漸減,溶液中GO沉降速率減緩、GO粒徑變小、GO界達電位的負值變大,顯示此共聚物確實能促進GO的分散。在合成的PAC中以PAC23(AM/CDP=4, Mn=2.1×104)的表現最佳。相較於商用型羧酸分散劑PC,PAC有更佳的GO分散效果。隨著PAC添加量的增加,含GO的砂漿抗壓/抗彎強度亦增。添加10wt% PAC23、0.05 wt% GOA的28天齡期砂漿試體,有最大的抗壓和抗彎強度、分別為37.2 MPa和7.5 MPa,比未添加氧化石墨烯或分散劑的對照組試體提升了32.3%和111%。相較於PC,PAC更能提升砂漿的機械性質。在合成的數種PAC中以PAC23(AM/CDP=4, Mn=2.1×104)的表現最佳。
    第三個主題為製備兩種兩性離子型的吸水性水膠,使用丙烯醯胺、disodium 1-(4-(3-((carboxylatomethyl)dimethylammonio) propylamino)-4-oxobut-2-enoate)( 1-(4-(3-(((羧甲基)二甲基銨)丙基氨基)-4-氧代丁-2-烯酸酯)二鈉)) (CDP)和矽藻土為單體,製備PAC和PACD兩種兩性離子型的吸水性水膠,使用FTIR作結構鑑定,探討單體比例、起始劑或交聯劑劑量和矽藻土含量對於水膠在各種水溶液下吸水率的影響。實驗評估將PACD複合水膠加到水泥砂漿中,作為自養護劑是否合宜,探討水膠和矽藻土量,對於水泥漿中對於水泥砂漿壓強度、內部濕度、乾縮量的影響。實驗結果顯示,PACD複合水膠,當AM/CDP= 4,APS=0.5 mle%,MBA=0.5 mole%,矽藻土15 wt%時的反應條件下,在純水中和孔隙溶液中的最大吸水率分別為
    362.4 g/g和115.4 g/g。添加矽藻土水膠的砂漿試體的內部濕度高於未添加矽藻土水膠的砂漿試體,後者則高於未添加水膠的砂漿試體。砂漿試體的內部濕度隨著添加的PACD水膠所含DE比例增加呈現先上升、達最大值後再下降的趨勢,其中以添加15 wt%DE的PACD3水膠的砂漿試體內部濕度為最高,其內部濕度到第22天方開始從100%往下降,到第28天的內部濕度仍有78.6%。添加矽藻土的砂漿試體的抗壓強度高於未添加矽藻土的砂漿試體,後者則高於未添加水膠的砂漿試體。砂漿試體的抗壓強度隨著添加的PACD複合水膠所含DE比例增加呈現先上升、達最大值後再下降的趨勢,其中以添加15 wt%DE的PACD3水膠的MD23砂漿試體抗壓強度為最高,在28天齡期的抗壓強度為39.8MPa,比未添加矽藻土的的PAC水膠的試體抗壓強度(34.5 MPa)提升了15%;比無添加水膠的試體抗壓強度(33.1 MPa)提升了20%。添加矽藻土的砂漿試體的乾縮量低於未添加矽藻土的砂漿試體,後者則低於未添加水膠的砂漿試體。砂漿試體的乾縮量隨著添加的PACD水膠所含DE比例增加呈現先下降、達最低值後再上升的趨勢,其中以添加15 wt%DE的PACD3水膠的砂漿試體乾縮量為最低。

    This study is divided into three main subjects:the synthesis of copolymer dispersants
    applied to the thermal conductivity of graphene oxide and epoxy resin composites, the synthesis amphoteric of dispersants and application in the dispersion of graphene oxide in mortar,synthesis amphoteric hydrogel/ diatomite composites and their application in mortar.
    The first topic is the synthesis of a copolymer.Poly(GMA-co-Eu) is synthesized by Glycidyl methacrylate and Eugenol as monomer,and and AIBN as initiator. The chemical structure was confirmed by FTIR and NMR analysis.Graphene was oxidized to graphene oxide (GO) using Hummers method.Structure was confirmed using FTIR and Raman.Then, the influence of solvent and copolymer addition amount on the thermal conductivity of GO/Epoxy composite was discussed.Using SEM to observe the dispersion of GO in epoxy.Compare adding different PGE and thermal conductivity of PVP, TX100 for GO/Epoxy composites.
    The results indicated that graphene is oxidized to GO by Hummers method. Using FTIR
    and Raman confirmed.Among the five synthes-ized PGEs,PGE3 (GMA/Eu=2, Mn=6.7×103) has the best dispersion effect.The K value of the GO/Epoxy composite containing 6% PGE and 10wt% GO is 3.32 W/mK,which is 26% higher than that of the composite containing 10wt% GOA(=2.62 W/mK) without dispersant added.The K value of the GO/Epoxy composite containing.6% PGE and 20wt% GOA is 5.02 W/mK, which is 71% higher than that of the composite ontaining 20wt% GOA (=2.93 W/mK) without dispersant.The K values of the GO/Epoxy composites obtained by adding the samedose of PGE are higher than those
    with PVP.
    The second topic is the synthesis of an amphoteric copolmer,poly-(acrylamide-co-1-(4(3-((carboxylatomethyl)- dimethyl-ammonio)propylamino)-4-oxobut-2-enoate)(PAC), was synthesized and evaluated as dispersion agent for GO in cement. PAC was prepared from acrylaide1-(4-(3-((carboxylate-methyl)-dimethyl ammonio)propylamino)-4-oxobut2enoate )(CDP).The chemical structure were confirmed by FTIR and NMR spectral analysis. The dispersion effects of PAC were examinedby measuring the sedimentation and viscosity of GO in pore solutions, and by analyzing the particle size. The results indicated that PAC was indeed effective in dispersing the nanoparticles, for the resulting suspensions were more stabilized and less viscous, and contained GO with smaller particle sizes.The dispersing ability of the prepared polymer appeared to be better than a commercial polycarboxylate-based superplasticizer.The viscosity of 2.65 mPa·s and the addition of 10wt% PAC23 and 0.05 wt% GOA to the cement mortar had 28-day compressive strength of 32.3 Mpa and flexural strength of 7.5Mpa.
    The third topic uses AM,CDP and diatomite as monomers to prepare two amphoteric hydrogels PAC and PACD.The chemical structure was confirmed by FTIR spectral analysis.The parameters what could be effected experment are monomer ratio,initiator and crosslinker dosage,and diatomaceous earth (DE) content. Then measure hydrogel water absorbency in water and pore solution.We estimate is it reasonable which PACD hydrogel add into mortar as self-curing reagent.We explored the effects of hydrogel and diatomite content on the compressive strength,internal humidity and dry shrinkage of cement mortar in cement paste. The results indicated that when in the optimum recipe,PACD hydrogel water absor-bency is 362.4 g/g in water,in pore solution is 115.4 g/g.When weadd PACD3 hydro-gel into mortar as self-curing reagent, the optimum dosage is 0.2 wt%,in this condi-tion, improve performance in compressive strength,internal humidity and dry shrink-age are better than control group without hydrogel present.

    第一章緒 論 1 第二章 文獻回顧 4 2-1石墨烯 4 2-2石墨烯製備方法 5 2-2-1機械式方法 5 2-2-2氧化石墨烯法 6 2-2-3化學氣相沉積法 6 2-2-4電化學製備石墨烯法 7 2-2-5碳化矽法 7 2-3石墨烯分散於環氧樹脂複合材料 8 2-4 氧化石墨烯於水泥砂漿中的分散 11 2-5 矽藻土/兩性複合水膠的合成和性質研究 14 第三章共聚物分散劑合成應用於氧化石墨烯與環氧樹脂複合材料熱傳性 18 3-1氧化石墨烯/環氧樹脂(GO/EPOXY)複合材料 18 3-2實驗藥品裝置與流程 20 3-2-1實驗藥品 20 3-2-2儀器設備 21 3-2-3實驗流程 22 3-3實驗方法 23 3-3-1 氧化石墨烯的製備 23 3-3-2 PGE分散劑合成 24 3-3-3氧化石墨烯/環氧樹脂(GO/Epoxy)複合材料製備 25 3-3-4結構鑑定與材料鑑定方法 28 3-4 實驗結果與討論 30 3-4-1石墨烯和氧化石墨烯的FTIR 光譜分析 30 3-4-2環氧樹脂的FTIR光譜分析 31 3-4-3氧化石墨烯的拉曼光譜 32 3-4-4 GO的微觀分析 33 3-4-5 GOA在不同溶劑的沉降行為 34 3-4-6 PGE之結構鑑定 35 3-4-7 GOA/Epoxy複合材料的熱傳性質 40 3-5結論 46 第四章 兩性共聚物的合成及應用於砂漿中氧化石墨烯的分散 47 4-1前言 47 4-2實驗藥品裝置與流程 50 4-2-1實驗藥品 50 4-2-2儀器設備 52 4-2-3實驗流程 53 4-3實驗方法 54 4-3-1 DAPA之合成 54 4-3-2 CDP之合成 55 4-3-3 PAC之合成 56 4-4結構鑑定與分析 57 4-5 PAC分散劑在含有GO的孔隙溶液之分散性測試 58 4-6添加PAC與氧化石墨烯的水泥漿性質分析 60 4-7結果與討論 63 4-7-1 結構鑑定 63 4-7-2 PAC對氧化石墨烯在孔隙溶液之分散性測試 69 4-8 PAC與GO對砂漿抗壓強度的影響 79 4-9 PAC與GO對砂漿抗灣強度的影響 82 第五章兩性離子水膠/矽藻土複合材料的合成和性質研究 87 5-1 前言 87 5-2 實驗器材與流程 89 5-2-1 實驗藥品 89 5-2-2 實驗儀器 90 5-2-3實驗流程 91 5-3 合成水膠 92 5-4實驗方法 95 5-4-1紅外光(FTIR)光譜分析 95 5-4-2吸水率。 95 5-4-3 PACD複合水膠對砂漿性質的影響 96 5-5 結果與討論 98 5-5-1結構之測定 98 5-5-2反應條件對PAC水膠吸水率之影響 101 5-5-3 PACD複合水膠吸水率之影響 104 5-5-4 PACD複合水膠對砂漿性質的影響 106 5-6結論 111 參考文獻 112

    參考文獻
    1. O.C.Compton, S.T.Nguyen " Graphene oxide, highly reduced graphene oxide, and graphene: versatile buildingblocks forcarbon based materials “ Small, 6, 2010, 711.
    2. LV,W.Dail, A.Li "Graphene based thermal interface materials:an application-oriented perspective on architecture design." Polym,10, 2018, 1201.
    3. K. Hu, D. Kulkarni "Graphene-polymer nanocomposites for structural and functional applications”Prog. Polym.Sci, 39, 2014, 1934–1972.
    4. M.Acik ,Y.J.Chabal "Nature of graphene edges a Review "J.Appl.Phys, 50, 2011, 16.
    5. J. Huang, L. J. Cote, J. Kim, F. Kim " New insight into an old material graphene oxide assurfactant sheets " Materialsnet, 291, 2011, 123-134.
    6.B. Du, X. Kong, M. Xiao, J. Li " Advances in Thermal Performance of Polymer-Based Composites " Ces Tems, 33, 2018, 3149-3159.
    7.L,Zhao, X.Guo "Mechanical behavior and toughening mechanism of poly-carboxylate superplasticizer modified graphene oxide reinforced cement composites" Compos.B.Eng, 113, 2017, 308–316.
    8. E.A.B.Koenders,K.van Breugel”Numerical modelling of autogenous shrinkage of hardening cement paste”Cem Cgeneration of High Performance Concrete: Concrete with Autogenous Curing" Adv Cem Based Materials.6, 1997, 59-68.
    9. K.P.Loh, Q.l.Bao , P. K.Ang , J.Yang"The chemistry of graphene”J. Mater. Chem, 20, 2010, 2277-2289.
    10. K.Alam,Y.Y.Jo,C.K.Park, H.Cho"Synthesis of grapheme oxide using atmospheric plasma for prospective biological applications" Int.J.Nanomedicine,15, 2020, 5813-5824.
    11. Q.Zhou, G.Xia, M.Du, Y.Lu, H.Xu "Scotch-tape-like exfoliation effect of graphene quantum dots for efficient preparation of graphene nanosheets in water" Appl. Surf. Sci, 483, 2019, 52–59.
    12. G. Edaand, M.Chhowalla " Chemically Derived Graphene Oxide: Towards large-area thin-film electronics and optoelectronics”Adv. mater.22, 2010, 2392–2415.
    13. A. Singh , N. Sharma , M. Arif , R. S. Katiyar" Electrically reduced graphene oxide for photovoltaic application " JMR, 28, 2019, 652-661.
    14. Y.H.GAO, G.J.YIN, S.W.ZHANG, Q.J.MENG, X.D. LI. " Research progress in electrochemical preparation of graphene" J. Mater. Sci, 48, 2020,84-100.
    15. L. Jiao, L. Zhang " Narrow graphene nanoribbons from carbon nanotubes “ Nature , 458 , 2009, 877-880.
    16. N.Liu,F. Luo" One-step ionic liquid assisted electrochemical synthesis of ionc liquid functionalized graphene sheets directly from graphite”Adv. Funct. Mater.18, 2008, 1518–1525.
    17. P.Sutter "How silicon leaves the scene”Nat. Mater, 8,2009, 171.
    18. Q.Ma, J.Luo, Y.Chen " Reactive copolymer functionalized graphenesheet for enhanced mechanical and thermal properties of epoxy composites " J Polym Sci A Polym Chem, 53, 2015, 2776–2785.
    19. S Wan, J Peng, L Jiang, Q Cheng " Bioinspired graphene-based nanocomposites and their application in flexible energy devices”Adv. Mater, 28, 2016, 7862–7898.
    20. C.C.Teng , C.C. Ma , C.H.Lu, S.Y.Yang, S.H. Lee, M.C. Hsiao , M.Y.Yen, K.C. Chiou, T.M. Lee "Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites "Carbon , 49, 2011, 5107–5116.
    21. C.Bao, Y.Guo, L.Song, Y.Kan, X.D.Qian,Yuan Hu " In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements" J. Mater. Chem, 35, 2011, 13290-13299..
    22. P.Li, Y.Zheng, T.Shi, Y.Wang, M.Li, C.Chen, J.Zhang " A solvent-free graphene oxide nanoribbon colloid as filler phase for epoxy-matrix composites with enhanced mechanical, thermal and tribological performance”Carbon, 96, 2016, 40-48
    23. P. Zong, J.Fu, L.Chen "Effect of aminopropylisobutyl polyhedral oligomeric silsesquioxane functionalized graphene on the thermal conductivity and electrical insulation properties of epoxy composites”RSC Adv.6, 2016, 1049.
    24. J. B. Petersen, J. Meruga, J. S. Randle, W. M. Cross, J. J. Kellar " Hansen solubility parameters of surfactant capped silver nanoparticles for ink and printing technologies"Langmuir,30, 2014, 15514.
    25. S. Lv, Y. Ma "Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites " Constr Build Mater49,2013, 121
    26. H.Babak, , R.Abolfaz, G.Parviz "Preparation and mechanical properties of GO: cement nanocomposites”Sci. World J. 2014, 1–10.
    27. M. Wang, R. Wang, H. Yao, Z.Wang, S. Zheng " Adsorption characteristics of graphene oxide nanosheets on cement”RSC Adv, 6, 2016, 68, 63365.
    28. H. Du, H. J. Gao, S.D. Pang, "Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet “ Cem Concr Res,83, 2016, 114.
    29. J.Binner. "The role of ammonium polyacrylate in dispersing concentrated alumina suspensions, "J. Eur. Ceram. Soc, 20, 2000, 1539.
    30. K.Amini, A.Ghasemi, "Siavash Soleimani the synergic effects of metakaolin and polycarboxylate-ether on dispersion of graphene oxide in cementitious environments and macro-level properties of graphene oxide modified cement composites" Constr. Build. Mater. 270 , 2021, 121462.
    31. Z. Lu, A. Hanif "Steric stabilization of graphene oxide in alkaline cementitious solutions:mechanical enhancement of cement composite" Mater. Des.127, 2017, 154–161.
    32. J. Plank, E. Sakai, C.W. Miao, C. Yu, J. X. Hong”Chemical admixtures - Chemistry, applications and their impact on concrete microstructure and durability cement" Concr Res, 78, 2015, 81–99.
    33. D. Snoeck,N. D.Belie, "From straw in bricks to modern use of microfibers in cementitious composites for improved autogenous healing A review" Constr Build Mater.95, 2015, 774–787.
    34. V. Mechtcherine, E. Secrieru,S. Christof”Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars development of yield stress and plastic viscosity over time”Cement Concr Res,67, 2015, 52–65.
    35. D. Snoeck, L.F. Velasco, A. Mignon, "The effects of superabsorbent polymers on the microstructure of cementitious materials studied by means of sorption experiments”Cement Concr Res,77, 2015, 26–35.
    36. K. Kovler, S. Zhutovsky "Overview and future trends of shrinkage research". Mater Struct,39, 2006, 827.
    37. E.Holt "Contribution of mixture design to chemical and autogenous shrinkage of concrete at early age" Cem Concr Res, 35, 2005,464-472.
    38. O. M.Jensen,P. Lura" Techniques and materials for internal water curing of concrete". Mater Struct.39, 2006, 817.
    39. R.Henkensiefken, D.Bentz, T.Nantung, J.Weiss "Volume change and cracking in internally cured mixtures made with saturated lightweight aggregate under sealed and unsealed conditions" Cem Conc Composites.31, 2009, 427-437.
    40. G.R. Sensale,A. F. Goncalves "Effects of fine LWA and SAP as internal water curing agents”Int. J. Concr. Struct. Mater, 48, 2015,2261.
    41. P.Lura, M.Wyrzykowski, C.Tang, E.Lehmann "Internal curing with lightweight aggregate produced from biomass-derived waste" Cement Concr Res, 59, 2014, 24–33.
    42. O.M.Jensen,P. F.Hansen"Water-entrained cement-based materials II. Experimental observations” Cement Concr Res.32, 2002, 973-978.
    43. C.Y.Chang , S.Lee,K.Kim,S.K.Lee " Preparation and characterization of absorbent polymer-cement composites " Cem Conc Res.29, 1999, 231-236.
    44. L.Senff, R.C.E.Modolo, G.Ascensão, D.Hotz, V.M.Ferreira, J.A.Labrinch "Development of mortars containing superabsorbent polymer " Constr Build Mater.95, 2015, 575–584.
    45. D.Snoeck, N .Luickx,P.Dubruel,V.Vlierberghe,N.D.Belie"pH-responsive superabsorbent polymers: A pathway to self-healing of mortar" React Funct Polym, 93, 2015, 68–76.
    46. J.Justs,M.Wyrzykowski, D.Bajare, P.Luraa "Internal curing by superabsorbent polymers in ultra-high performance concrete " Cement Concr Res,76, 2015, 82–90.
    47. H.Beushausen, M.Gillmer "The use of superabsorbent polymers to reduce cracking of bonded mortar overlays" Cem Conc Composites, 52, 2014, 1–8.
    48. M.T. Hasholt "Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete " Mater Struct.48, 2015, 357.
    49. S.Weber, H.W.Reinhardt "A New Generation of High Performance Concrete: Concrete with Autogenous Curing" Adv Cem Based Materials, 6,1997, 59-68.
    50.L.P.Esteves”Recommended method for measurement of absorbency of superabsorbent polymers in cement-based materials" Mater Struct.48, 2015, 2397
    51. H. A. Rodrigues, C.Spagnol, G. B. Pereira, A. F. Martins, A.R. Fajardo, A.F. Rubira, E. C. Muniz" Superabsorbent Hydrogel Composites with a Focus on HydrogelsContaining Nanofibers or Nanowhiskers of Cellulose and Chitin" J. Appl. Polym. Sci 131, 2014, 39725.
    52. T.Thimma, R.A.Takahara "Simultaneous and sequential micro-porous emi-interpenetrating polymer network hydrogel filMD for drug delivery and wound dressing applications" Polymer, 50, 2009, 3537.
    53. X.P. Chen "Synthesis and properties of acrylic-based superabsorbent" J Appl Polym Sci, 92, 2004, 619.
    54.J.Feng,S.Yalong,Z.Hongen,S.X.Huang;W.Qingyuan;" Effect of the Pre-wetted Diatomite on the Cracking Resistance of High-strength Concrete at Early-age" 32, 2018, 3541.
    55. Q.Ma, J.Luo, Y.Chen " Reactive Copolymer Functionalized Graphene Sheet for Enhanced Mechanical and Thermal Properties of Epoxy Composites " J Polym Sci A Polym Chem, 53, 2015, 2776–2785
    56. M. Sadeghi , F.Soleimani " Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air “ Eur Polym J, 40, 2004 , 1363.
    57. A. Pourjavadi,H. Salimi "New protein-based hydrogel with superabsorbing Properties: effect of monomer ratio on swelling behavior and kinetics”Ind. Eng. Chem. Res, 47, 9206-9213.
    58. Y.Bao,Ji.Ma,N.Li "Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel". Carbohydrate Polym, 84,2011, 76-82.
    59. S.R.Shirsath, A.P.Patil.A.Bhanvase, S.H.Sonawane "Ultrasonically preparedpoly(acrylamide)-kaolin composite hydrogel for removal of crystal violet dye from wastewater". J Environ Chem Eng , 3, 2015, 1152.
    60. P.Liu,L.Jiang,L.Zhu,J.Guo,A.Wang " Synthesis of covalently crosslinked attapulgite/poly(acrylic acid-co-acrylamide) nanocomposite hydrogels and their evaluation as adsorbent for heavy metal ions" J Ind Eng Chem, 23, 2015,188–193.
    61. J.Feng,S.Yalong,Z.Hongen,S.X.Huang;W.Qingyuan;" Effect of the Pre-wetted Diatomite on the Cracking Resistance of High-strength Concrete at Early-age" Materials Reports , 32, 2018, 3541-3546
    62. S. T.Oh, W.R.Kim "Properties and structure of microcrystal muscovite composite superabsorbent". J Wuhan Univ of Technology-Mater. Sci. Ed, 29, 2014, 1302-1306.
    63. S.T. Oh, W.R. Kim " The preparation of polyurethane foam combined with pH-sensitive alginate/bentonite hydrogel for wound dressings" Fibers Polymers, 12, 2011, 159-165.
    64. P. Zong, J.Fu, L.Chen" Effect of aminopropylisobutyl polyhedral oligomeric silsesquioxane functionalized graphene on the thermal conductivity and electrical insulation properties of epoxy composites " RSC Adv.6, 2016, 10498.
    65. C.Zeng ,S.Lu ,X.Xiao ,J.Gao , L.Pan , Z.He ,J.Yu " Enhanced thermal and mechanical properties of epoxy composites by mixing noncovalently functionalized graphene sheets " Polym. Bull,72,2015, 453–472
    66. Q.Zhu, C. W. Barney" Effect of ionic crosslinking on the swelling and mechanical response of model superabsorbent polymer hydrogels for internally cured concrete”Mater Struct, 48, 2015, 2261–2276.
    67. E. P.R.Dale, A.C.B.Craig ,E.Banks " A decade of graphene research: production, applications and outlook "Mater. Today 17, 2014,426.
    68. S antosh K. Tiwari , Sumanta Sahoo”Graphene research and their outputs: Status and prospect”Adv. Mater. Devices, 5, 2020,10.
    69. S. Syama, P. V. Mohanan " Comprehensive Application of Graphene: Emphasis on Biomedical Concerns”Nano-Micro Lett,11,2019, 1-31.
    70. E.Shamsaei, X.Yao,E.Benhelal,A.Akbari,W.Duan" Graphene-based nanosheets for stronger and more durable concrete: A review”Constr. Build. Mater. 183, 2018, 642.
    71. C.Liang " Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities" Compos Sci Technol, 139 , 2017, 83-89.
    72. H.M. Duong, N. Yamamoto, K. Bui, D.V. Papavassiliou, S. Maruyama, B.L. Wardle" The influence of injection molding parameters on electrical properties of PC/ABS-MWCNT nanocomposites" J. Phys. Chem. C , 114 , 2010, 8851.
    73. H.M. Duong, N. Yamamoto, D.V. Papavassiliou, S. Maruyama, B.L. Wardle, "Inter-carbon nanotube contact in thermal transport of controlled-morphology polymer nanocomposites" Nanotechnology , 20, 2009, 155702.
    74. Veca LM, Meziani MJ, Wang W, Wang X, Lu F, Zhang P, et al "Carbon nanosheets for polymeric nanocomposites with highthermal conductivity" Adv Mater, 21, 2009, 2088–92.
    75. A. Yu, P.Ramesh, X.Sun, E. Bekyarova, M. E. Itkis, R.C Haddon"Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotubes filler for epoxy composites". Adv Mater20, 2008, 4740.
    76. S.Ganguli,W.Patterson A.F.Base,A.K.Roy,D.P. Anderson"Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites". Carbon, 46 ,2008, 806-817.
    77. Y.Wang, J.Yang, D.Ouyang”Effect of graphene on mechanical properties of cement mortars "J. Cent. South Univ, 23, 2016, 919−925.
    78. P. Zong, J.Fu, L.Chen, " Effect of aminopropylisobutyl polyhedral oligomeric silsesquioxane functionalized graphene on the thermal conductivity and electrical insulation properties of epoxy composites " RSC Adv, 6, 2016, 10498–10506 .
    79. C.Zeng, S.Lu ,X.Xiao, J.Gao , L.Pan , Z.He, J.Yu " Enhanced thermal and mechanical properties of epoxy composites by mixing noncovalently functionalized graphene sheets " Polym. Bull, 72 , 2015, 453–472.
    80. S.Lv, Y.Ma, C.Qiu,Q.Zhou "Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites " Constr Build Mater49,(2013)121
    81. P.Gane "General overview of graphene: Production, properties and application in polymer composites "Mater Sci Eng B. 215 , 2017, 9−28.
    82. H.Yang, H. Cui " A critical review on research progress of graphene/cement based composites Compos, Part A (2017), 102, 273.
    83. G. Bastos, F. P.Barbeito"Nano-inclusions applied in cement-matrix composites: a review "J. Armesto, Mater, 2016, 9, 1015.
    84. S.K.Rehman , S.Kumarova , S.A.Memon ,M. F. Javed ,M.Jameel "A Review of Microscale, Rheological, Mechanical, Thermoelectrical and Piezoresistive Properties of Graphene Based Cement Composite" Nanomater. 10, 2020, 2076.
    85. S. Srinivasan, S. A. Barbhuiya”Characterising cement–superplasticiser interaction using zeta potential measurements"Constr. Build. Mater.24, 2010, 2517.
    86. S. Lv,Y.Ma”Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites "Constr. Build. Mater, 49, 2013, 121–7.
    87. C. Lin,W.Wei. "Catalytic behavior of graphene oxide for cement hydration process”J. Phys. Sol, 89, 2016, 128-133.
    88. Y. Liu "Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution" Carbon, 127, 2018, 255-269.
    89. W.J.Long , C.Fang , J.Wei , H. Li"Stability of GO modified by different dispersants in cement paste and its related mechanism" Mater, 5, 2018, 834.
    90. A.M.Sabziparvar,E.Hosseini,V.Chiniforush,A.H.Korayem"Barriers to achieving highly dispersed graphene oxide in cementitious composites: An experimental and computational study”Constr. Build. Mater, 199, 2019, 269-278.
    91. K.Amini, A.Ghasemi, "Siavash Soleimani The synergic effects of metakaolin and polycarboxylate-ether on dispersion of graphene oxide in cementitious environments and macro-level properties of graphene oxide modified cement composites “ Constr. Build. Mater. 270 , 2021, 121462.
    92. C. S. Viswanatha, “Self Curing Concrete Recent Developments”Proceedings of International Conference on Advances in Concrete and Construction, Hyderabad, India, 2008, 378-394.
    93. O.M.JensenPer , F.Hansen "Water-entrained cement-based materials: I. Principles and theoretical background”Cem. Concr. Res, 31, 2001, 647– 654.
    94. O.M.JensenPer ,F.Hansen"Water-entrained cement-based materials – II. Experi mental observations”Cem. Concr. Res, 32, 2002, 973–978.
    95. C.Schroefl,V.Mechtcherine,P.Vontobel,J.Hovind,E.Lehmann"Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration “ Cement Concr Res. 75(2015), 1–13.
    96. C.S.Viktor, M.M.Gorges "Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage”Cem. Concr. Res, 42, 2012, 865-873.
    97. H X D Lee,H S Wong,N R Buenfeld "Potential of superabsorbent polymer for self-sealing cracks in concrete" Adv. Appl. Cer.109, 2010, 296-302.
    98. M.J. Krafcik ,K. A. Erk "Characterization of superabsorbent poly(sodium-acrylate acrylamide) hydrogels and influence of chemical structure on internally cured mortar”Mater. Structures, 49, 2016, 4765–4778.
    99. M. T.Hasholt,O. M.Jensen, "Can superabsorent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength “ Const. Buil. Mater, 31, 2012, 226–230.
    100. X.Y.Liu, C.H.Huang, C.H. Zhuang, K.C. Hsu "An amphoteric hydrogel: Synthesis and application as an internal curing agent of concrete “J Appl Polym Sci, 132, 2015, 42175.
    101. X.Fang."Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes" Carbon, 53 , 2013, 277–285.
    102. W.F. Lee, G.H. Lin, Superabsorbent polymeric materials VIII: Swelling behavior of crosslinked poly[sodium acrylate-co-trimethylmethacryloyloxyethyl ammonium iodide] in aqueous salt solutions. Journal of Applied Polymer Science, 79, 2001, 1665-1674.
    103. 藍漢中 聚(丙烯酸/丙烯醯胺)/飛灰複合水膠的合成和性質研究 2015
    104. W. Wang, A.Wang, Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydrate Polymers, 80, 2010, 1028-1036.
    105. W.Wang, Y. Kang , A.Wang, Synthesis, characterization and swelling properties of guar gum-g-poly(sodium acrylate-co-styrene)/muscovite superabsorbent composites. Science and Technology of Advanced Materials, 11, 2010, 1-11.
    106. D. Shen, T. Wang, Y. Chen, M. Wang, G. Jiang, "Effect of internal curing with super absorbent polymers on the relative humidity of early-age concrete”Constr. Build. Mater, 99, 2015, 246-253.
    107. P . Chindaprasirta, S. Homwuttiwong and V. Sirivivatnanon, "Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar" Cement and Concrete Research , 34, 2004, 1087–1092.
    108. G.R. Sensale,A. F. Goncalves "Effects of Fine LWA and SAP as Internal Water Curing Agents" Int. J. Concr. Struct. Mater, 48, 2015, 2261–2276.

    無法下載圖示 電子全文延後公開
    2027/08/26
    QR CODE