簡易檢索 / 詳目顯示

研究生: 賴玉彬
Yu-Bin Lai
論文名稱: 模糊可微分小腦模型控制器之設計與應用研究
The Design and Application of Fuzzy Differentiable Cerebellar Model Articulation Controller
指導教授: 洪欽銘
Hong, Chin-Ming
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 82
中文關鍵詞: 模糊邏輯控制器可微分小腦模型控制器模糊知識庫線性壓電陶瓷馬達
英文關鍵詞: Fuzzy Logical Controller, Differentiable Cerebellar Model Articulation Controller, Fuzzy Knowledge Base, Linear Piezoelectric Ceramic Motor
論文種類: 學術論文
相關次數: 點閱:170下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個模糊可微分小腦模型控制器(FDCMAC),它是結合模糊邏輯控制器(FLC)與可微分小腦模型控制器(DCMAC)之學習控制架構。模糊邏輯控制器採用模糊知識庫來描述一個系統的控制邏輯,在實際控制上模糊邏輯控制器比起一般傳統控制方法擁有更好的強健性與適應性。但是,模糊邏輯控制器的缺點是模糊知識庫需採嘗試錯誤法來建立且有穩態誤差,無法保證達到精確控制。可微分小腦模型控制器是一種應用查表方式的類神經計算技術,對於非線性函數具有快速的學習收斂速度和良好的區域性類化能力。藉由可微分小腦模型控制器的加入,可以改善模糊邏輯控制器的缺點,縮短以嘗試錯誤法來設計模糊知識庫的時間,並進而提昇控制系統的效能。經由模擬結果證實,在簡單的模糊邏輯控制器設計方式下,本控制器可以明顯降低系統的追蹤誤差,並有效地提昇控制精確度。最後,將本論文所提之控制架構實際應用於線性壓電陶瓷馬達(LPCM)位置控制,結果證實具有良好之控制性能和強健性。

    This thesis proposed a fuzzy differentiable cerebellar model articilation controller (FDCMAC). Its main method is to combine fuzzy logical controller (FLC) and differentiable cerebellar model articulation controller (DCMAC). FLC usually uses a fuzzy knowledge base to characterize its control logic for a given system to control. As compared with conventional controllers such as PID controller, FLC can provid better robustness and adaptation in practical control. Its fuzzy knowledge base is created by trial and error. It has steady state error, so it may not guarantee precise control. DCMAC is a table look-up neuron-computing technique. It performs well in terms of its fast learning speed and local generalization capability for approximating nonlinear function. Compared with the FLC, this new controller shortens the design process of fuzzy knowledge base by less trial and error, and improves performance of the control system. According to simulated results, this controller can significantly reduce the tracking error and effectively elevate the accuracy in control process. At last, the experiment results for linear piezoelectric ceramic motor (LPCM) drive system with proposed controller has performed to demonstrate a high performance and robust control system.

    中文摘要……………………………………………………………I 英文摘要……………………………………………………………II 總目錄………………………………………………………………III 圖目錄………………………………………………………………VI 表目錄………………………………………………………………VIII 第一章 緒論…………………………………………………………1 1.1 研究背景與動機…………………………………………………1 1.2 研究目的…………………………………………………………3 1.3 研究範圍與限制…………………………………………………3 1.4 研究方法…………………………………………………………4 1.5 研究步驟…………………………………………………………4 第二章 模糊控制理論………………………………………………7 2.1 模糊控制之理論背景……………………………………………7 2.2 模糊集合…………………………………………………………8 2.2.1 模糊集合之基本性質………………………………………9 2.2.2 模糊集合之基本運算………………………………………11 2.3 模糊推論…………………………………………………………13 2.3.1 模糊推論方式………………………………………………14 2.4 模糊控制…………………………………………………………18 第三章 小腦模型控制器理論………………………………………23 3.1 小腦模型控制器之理論背景……………………………………23 3.2 傳統小腦模型控制器……………………………………………24 3.2.1 傳統小腦模型控制器之基本架構…………………………24 3.2.2 傳統小腦模型控制器之記憶體映射方式…………………25 3.2.3 傳統小腦模型控制器之回想與學習演算法………………27 3.3 可微分小腦模型控制器…………………………………………30 3.3.1 可微分小腦模型控制器之基本架構………………………31 3.3.2 可微分小腦模型控制器之記憶體映射方式………………31 3.3.3 可微分小腦模型控制器之回想與學習演算法……………33 3.4 傳統CMAC與DCMAC學習能力之比較……………………………37 第四章 模糊可微分小腦模型控制器設計…………………………40 4.1 控制系統之架構…………………………………………………40 4.2 模糊邏輯控制器設計……………………………………………41 4.3 可微分小腦模型控制器設計……………………………………44 4.3.1 可微分小腦模型控制器之參數設定………………………44 4.3.2 可微分小腦模型控制器之回想程序………………………45 4.3.3 可微分小腦模型控制器之學習程序………………………46 4.4 非線性系統之數位模擬…………………………………………46 第五章 線性壓電陶瓷馬達位置控制實驗…………………………51 5.1 壓電陶瓷馬達之簡介……………………………………………51 5.2 實驗系統架構……………………………………………………54 5.3 實驗結果…………………………………………………………57 第六章 研究結論與建議……………………………………………77 6.1 研究結論…………………………………………………………77 6.2 研究建議…………………………………………………………77 參考文獻………………………………………………………………79 作者簡介………………………………………………………………82

    英文部份
    [1]L. A. Zadeh, “Fuzzy sets,” Informational and Control, Vol.8, pp.338-353, 1965.
    [2]E. H. Mamdani, “Applications of Fuzzy Algorithms for Simple Dynamic Plant,” Proc. IEEE, Vol.121, No.12, pp.1585-1588, 1974.
    [3]E. H. Mamdani and S.Assilian, “An Experiment in Linguistic Sythesis with a Fuzzy Logic Controller,” Int. Journal of Man Machine Studies, Vol.7, No.1, pp.1-13, 1975.
    [4]LEE, C. C., “Fuzzy Logic in Control Systems : Fuzzy Logic Lontroller – Part I, Part II”, IEEE Transactions on Systems, Man, and Cybernetics, Vol.20 No.2, pp.404-433, 1990.
    [5]O. Itoh, K. Gotoh, T. Nakayama and S. Takamizawa, “Application of Fuzzy Control to Activated Sludge Process,” Proc. 2nd IFSA Congress, pp.282-285, 1987.
    [6]J. A. Bernard, “Use of Rule-based System for Process Control,” IEEE Contr. Syst. Mag. ,Vol.8, No.5, pp.3-13, 1988.
    [7]Ming-Yuan Shieh and Tzuu-Hseng S. Li, “Design and Implementation of Integrated Fuzzy Logic Controller for a Servomotor System,” Mechatronics, Vol.8, No.3, pp.217-240, 1998.
    [8]Y. C. Huang, H. T. Yang and C. L. Huang, “Developing a New Transformer Fault Diagnosis System through Evolutionary Fuzzy Logic,” IEEE Transactions on Power Delivery, Vol.12, No.2, pp.761-767, 1997.
    [9]W. Z. Qiao and M. Mizumoto, “PID Type Fuzzy Controllers and Parameters Adaptive Method,” Fuzzy Sets and Systems, Vol.78, pp.23-35,1996.
    [10]F. L. Lewis and K. Liu, “Towards a Paradigm for Fuzzy Logic Control,” Automatica, Vol.32, No.2, pp.167-181, 1996.
    [11]J. Nie and D. A. Linkens, “A Fuzzified Cerebellar Model Articulation Controller with Self-organizing Capacity,” Automatica, Vol.30, No.4, pp.655-664, 1994.
    [12]J. S. Albus, “A New Approach to Manipulator Control : the Cerebellar Model Articulation Controller (CMAC),” ASME Journal of Dynamic Systems, Measurement, and Control, pp.220-227, 1975.
    [13]J. S. Albus, “Data Storage in the Cerebellar Model Articulation Controller (CMAC),” ASME Journal of Dynamic Systems, Measurement, and Control, pp.228-233, 1975.
    [14]W. T. Miller, F. H. Glanz and L. G. Kraft, “Application of a General Learning Algorithm to the Control of Robotic Manipulators,” The International Journal of Robotics Research, Vol.6, No.2, pp.84-98, Summer, 1987.
    [15]W. T. Miller, “Real-time Application of Neural Network for Sensor-Based Control of Robots with Vision,” IEEE Trans. Syst., Man, Cybern., Vol.19, No.4, pp.825-831, 1989.
    [16]W. T. Miller, R. H. Hewes, F. H. Glanz, and L. G. Kraft, “Real-time dynamic control of an industrial manipulator using a neural-network-based learning controller,” IEEE Trans. Robot Automation, Vol.6, No.1, pp.1-9, 1990.
    [17]W. T. Miller, F. H. Glanz and L. G. Kraft, “CMAC : An Associative Neural Network Alternative to Backpropagation,” IEEE Proceedings, Vol.78, No.10, pp.1561-1567, 1990.
    [18]W. T. Miller, “Real-Time Neural Network Control of A Biped Walking Robot,” IEEE Control Systems Magazine, Vol.141, pp.41-48, 1994.
    [19]Y.-F. Wong and A. Sideris, “Learning Convergence in the Cerebellar Model Articulation Controller,” IEEE Trans. on Neural Networks, Vol. 3, No.1, pp. 115-121, 1992.
    [20]J. S. Ker, Y. H. Kuo, B. D. Liu, “A Fuzzy CMAC Model for Color Reproduction,” Fuzzy Sets and Systems, pp.53-68, 1997.
    [21]H.-M. Lee; C.-M. Chen; Y.-F. Lu, “A Self-organizing HCMAC Neural Network Classifier,” Proceedings of the IEEE International Conference on Neural Networks, Vol.3, pp.1960-1965, 2001.
    [22]F. C. Chen and C. H. Chang, “Practical Stability Issues in CMAC Neural Network Control Systems,” IEEE Trans. Control Syst. Technol., Vol.4, No.1, pp.86-91, 1996.
    [23]C. C. Lin and F. C. Chen, “Improved CMAC Neural Network Control Scheme,” Electronics Letters, Vol.35, No.2, pp.157-158, 1999.
    [24]C. T. Chiang and C. S. Lin, “Integration of CMAC and Radial Basis Function Techniques,” IEEE International Conference on Intelligent Systems for the 21st, Vol. 4, pp.3263-3268, 1995.
    [25]C. T. Chiang and C. S. Lin, “CMAC with General Basis Functions,” Neural Network, Vol.9, No.7, pp.1199-1211, 1996.
    [26]C. S. Lin, C. T. Chiang, “Learning Convergence of CMAC Technique,” IEEE Trans. Neural Networks, Vol.8, No.6, pp.1281-1292, 1997.
    [27]S. H. Lane, D. A. Handelman, J. J. Gelfand, “Theory and Development of Higher-Order CMAC Neural Networks,” IEEE Contr. Syst., Vol.12, pp.23-30, 1992.
    [28]R. J. Wai, C. M. Lin and Y. F. Peng, “Intelligent Hybrid Control for Linear Piezoelectric Ceramic Motor Using CMAC Network,” R.O.C. Symposium on Electrical Power Engineering, pp.430-434, 2002.
    [29]S. Ueha, Y. Tomikawa, M. Kurosawa and N. Nakamura, “Ultrasonic Motors Theory and Applications,” Oxford:Clarendon Press, 1993.
    [30]T. Sashida, T. Kenjo, “An Introduction to Ultrasonic Motors,” Oxford:Clarendon Press, 1993.
    [31]“AB1A Driver Box User Manual,” Nanomotion Ltd, 2001.
    [32]“HR4 Ultrasonic Motor User Manual,” Nanomotion Ltd, 2002.
    中文部份
    [33]王進德、蕭大全,“類神經網路與模糊控制理論入門”,全華科技圖書股份有限公司,1994。
    [34]溫坤禮、陳振欽與鄧國修,“模糊控制原理與應用”,全華科技圖書股份有限公司,1994。
    [35]孫宗瀛、楊英魁,“Fuzzy控制:理論、實作與應用”,全華科技圖書股份有限公司,1997。
    [36]王文俊,“認識Fuzzy-第二版”,全華科技圖書股份有限公司,2001。
    [37]李允中、王小璠與蘇木春,“模糊理論及其應用”,全華科技圖書股份有限公司,2003。
    [38]林法正、魏榮宗與段柔勇,“超音波馬達之驅動與智慧型控制”,滄海書局,1999。
    [39]林家德,“植基於遺傳演算法下的模糊控制器設計及其在倒立單擺上的應用”,國立臺灣師範大學工業教育系碩士班論文,1995。
    [40]黃昭諺,“間時滑動模式之可微分小腦模型控制器設計”,國立臺灣師範大學工業教育系碩士班論文,2001。
    [41]劉德順,“PID型模糊邏輯控制器之設計與解析”,國立清華大學動力機械工程學系碩士班論文,1998。
    [42]“AD/DA Servo Control Card使用說明書”,台灣仿真科技公司。

    QR CODE