研究生: |
劉恩豪 EN-HAO LIU |
---|---|
論文名稱: |
無強制條件的擬變分不等式 Noncoercive Quasi-variational Inequalities |
指導教授: | 朱亮儒 |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 英文 |
論文頁數: | 17 |
中文關鍵詞: | 無強制性擬變分不等式 、擬變分不等式 、擬凸函數 、極大極小不等式 、凹退函數 、凹退錐 |
英文關鍵詞: | Noncoercive quasi-variational inequality, quasi-variational inequality, quasi-convex function,, recession function, recession cone, minimax inequality |
論文種類: | 學術論文 |
相關次數: | 點閱:302 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
變分不等式的理論是研究一制化與一般化格式的非線性問題之有效工具.在某些強制化的性質下,數學家已獲得許多存在性的結果;然而,很多非線性問題格式化成變分不等式的型態時都是非強制型態.關於非強制性的變分不等式問題,近年來雖已逐漸受到研究者的重視,但可供參考的相關文獻仍非常有限.目前發現用來處理這些問題的研究大概有Attouch凹退函數理論,Leray-Schauder理論及Goeleven的判別點理論等.在本論文中,我們將沿用Attouch與Adly的凹退錐與凹退函數之概念及某些極大極小不等式,來建立一般化非強制型擬變分不等式的存在理論.
The theory of variational inequalities introduced by Stampacchia has emerged as an interesting branch of applied mathematics. This theory is a very effective tool for
studying a wide class of nonlinear problems in a unified and general framework. Several theoretical results are known under a coerciveness property, see for instance, Br´ezis, Browder, Saigal and Mosco. However, the variational formulation of many nonlinear problems leads to noncoercive variational inequalities.
[1] S. Adly, D. Goeleven, D. Goeleven & M. Th´era, Recession mappings and nonco-ercive
variational inequalities, Nonlinear Analysis, Theorey, Methods & Applica-tions,
Vol 26(9),1573-1603 (1996).
[2] H. Attouch, Z. Chbani & A. Moudafi, Recession operators and solvablity of vari-ational
problems, Preprint, Laboratoire d’Analyse Convex, Universit´e de Mont-pellier
II, 1993.
[3] C. Baiocchi, F. Gastaldi & F. Tomarelli, In´equations variationelles non coercives,
C.R. Acad. Sci. Paris 1229, 647-650(1984).
[4] C. Baiocchi, G. Buttazzo, F. Gastaldi & F. Tomarelli, General existence theorems
for unilateral problems in continum mechanics, Archs Ration. Mech. Analysis
100(2), 149-180(1988).
[5] H. Br´ezis, Equations et in´equations non-lin´earies dans les espaces vectoriels en
dualit´e, Annls. Inst. Fourier Univ. Grenoble 18(1) , 115-175(1968).
[6] H. Br´ezis, L. Niremberg, & G. Stampacchia, A remark of Ky Fan’s minimax
principle, Boll. Un. Mat. Ital. (4),6, 293-300(1972).
[7] F. Browder, Nonlinear monotone operatrs and convex sets in Banach spaces, Bull.
Am. math.Soc, 71, 780-785(1965).
[8] F. Browder, Nonlinear maximal monotone mappings in Banach spaces,
Math.Ann. 175, 81-113(1968).
[9] F. Browder, Nonlinear operator and nonlinear equations of evolution in Banach
spaces, Proc. Sympos. Pure Math., 18, Part 2 (the entire issue) , Am. Math. Soc.,
Providence, RI(1976).
[10] A. Daniilidis & N. Hadjisavvas, Coercivity conditions and variational inequalities,
Math.programming, 78, 305-314(1997).
[11] F. B. Fabi´ an, Existence theorems for generalized noncoercive equilibrium prob-lems:
The quasi-convex case, SIAM J. Optim., 11, No. 3, 675-690(2000).
[12] F. B. Fabi´ an & W. Sosa, Existence of solutions for noncoercive pseudomonotone
equilibrium problems, Math. Oper. Res., submitted.
[13] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann., 142,
305-310(1961).
[14] F. Gastaldi & F. Tomarelli, Some remarks on nonlinear and noncoercive varia-tional
inequalities, Boll. Un. Mat. Ital. B (7), 1, 143-165(1987).
[15] D. Goeleven, On the solvability of linear noncoercive variational inequality in
seperable Hilbert spaces, J. Optim. Theory. Applic. 79 (1993).
[16] D. Goeleven & M. Th´era, variational inequality and the existence of equilbrium
state on a thin elastic plate, Serdica Math. J. 21 , 1001-1017(1995).
[17] D. Goeleven & M. Th´era, Some global results for nonlinear eigenvalue problems
governed by a variational inequality of von Karman type, Univ. Degli Studi di
Milano, Quadeno 21, Univ. Degli Studi di Milano, Milan (1993).
[18] D. Goeleven, V. H. Nguyen & M. Th´era, Nonlinear eigenvalue problems gov-erned
by variational inequality of von Karman type: a degree theoric approach,
Topological Methods in Nonlinear Analysis, 2, 235-276(1993).
[19] D. Goeleven, V.H. Nguyen & M. Willem, Existence and multiplicity results for
noncoercive unilateral problems, Bull. Aust. Math. Soc. 49, 489-498(1994).
[20] N. Hadjisavvas & S. Schaible, Quasimonotonicity and pseudomonotonicity in
variational inequalities and equilibrium problems, in Generalized Convexity, Gen-eralized
Monotonicity : Recent Results, J.-P. Crouzeix, J.-E. Martinez-Legaz,
and M. Volle, eds., Kluwer, Dordrecht, 257-275(1998).
[21] P. T. Harker & J. S. Pang, Finite dimensional variational inequality and nonlin-ear
complementarity problems: A survey of theory, algorithms and app;ications,
Math.programming, 48, 161-220(1990).
[22] S. Karamardian, Generalized complementarity problems, J. Optim. Theory
Appl.,8, 161-168(1971).
[23] S. Karamardian, Dulity in mathematical programming, J. Math. Anal. Appl., 20,
344-358(1967).
[24] H. Kneser, Sur le Theoreme Fondamentale de al Theorie des Jeux, C.R. Acad.
Sci. Paris 234, 2418-2420(1952).
[25] U. Mosco, A remark on a theorem of F. E. Browder, J. Math, Anal. Appl., 20,
90-93(1967).
[26] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ
(1972).
[27] M. H. Shih & K. K. Tan, Browder-Hartman-Stampacchia Variational Inequalities
for Multi-valued Monotone Operators, J. Math. Anal. Appl., 134, 431-440(1988).