簡易檢索 / 詳目顯示

研究生: 高銘佐
Ming-Tso Kao
論文名稱: 鍶釕氧超導體的庫柏電子對對稱性及傳輸性質
Pairing Symmetry and Transport properties of Sr2RuO4 Superconductors
指導教授: 吳文欽
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 34
中文關鍵詞: 鍶釕氧超導體庫柏電子對稱性傳輸性質
論文種類: 學術論文
相關次數: 點閱:232下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超導能隙結構,特別是能隙結點的方向,是了解非傳統超導體的庫柏電子對機制的重要課題。在本論文中,我們以傳輸性質的觀點(熱傳導及超聲波衰減)檢驗了鍶釕氧超導體的有序參數對稱性。我們考慮了鍶釕氧的三個能帶,來分析目前的重要模型。為了研究電子-聲子交互作用的各向異性如何影響超聲波衰減,我們也推導了適當的算式。相關的計算還在進行中,將會在爾後提出。

    The superconducting gap structure, especially the direction of nodes, is a crucial issue for understanding the pairing mechanism of unconventional superconductors. In this thesis, we examine the order parameter symmetry of superconductor Sr2RuO4 inthe view points of transport properties (thermal conductivity and ultrasonic attenuation).
    We investigate the current leading pairing models by taking into account allthree bands for Sr2RuO4. To see how the anisotropic electron-phonon interaction affects the results of ultrasonic attenuation, we have also derived the appropriate formalism. Related calculations are underway and will be presented elsewhere.

    1 Introduction . . . . . . . . . . . . . . . . . . . .1 1.1 Basic properties of Sr2RuO4 . . . . . . . . . . . 1 1.2 The symmetry of Cooper pairs . . . . . . . . . . 4 1.3 Current leading pairing models of Sr2RuO4 . . . . 5 2 Hydrodynamic Transport Equations . . . . . . . . . 9 2.1 Thermal conductivity. . . . . . . . . . 9 2.2 Ultrasonic attenuation . . . . . . . . 12 3 Transport Property Calculations . . . . . 16 3.1 Fitting procedures and band dispersions 16 3.2 Results and discussions . . . . . . . . 18 4 Electron-Phonon Interaction . . . . . . . 25 4.1 Electron-phonon Hamiltonian of Sr2RuO4 .25 4.2 Ultrasonic attenuation with anisotropic electron-phonon interaction . . . . . . . . . . . . . . . . 28 4.3 Concluding marks . . . . . . . . . . . .28

    [1] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, and F. Lichtenberg, Nature 372, 532 (1994).
    [2] Y. Maeno, T.M. Rice, and M. Sigrist, Physics Today 54 (1), 42 (2001).
    [3] A.P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).
    [4] A.P. Mackenzie, S.R. Julian, A.J. Diver, G.J. McMullan, M.P. Ray, G.G. Lon- zarich, Y. Maeno, S. Nishizaki, and T. Fujita, Phys. Rev. Lett. 76, 3786 (1996).
    [5] T. Oguchi, Phys. Rev. B 51, 1385 (1995); D. J. Singh, Phys. Rev. B 52, 1358 (1995).
    [6] J. Bardeen, L. Cooper, and J. Schrie®er, Phys. Rev. 108, 1175 (1957).
    [7] D. Vollhardt and P. Wol°e, The Super°uid Phases of Helium 3 (Taylor & Francis, London, 1990).
    [8] K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z.Q. Mao, Y. Mori, and Y. Maeno, Nature 396, 658 (1998).
    [9] G. M. Luke, Y. Fudamoto, K.M. Kojima, M.I. Larkin, J. Merrin, B. Nachumi, Y.J. Uemura, Y. Maeno, Z.Q. Mao, Y. Mori, H. Nakamura, and M. Sigrist, Nature 394, 558 (1998).
    [10] J.A. Du®y, S.M. Hayden, Y. Maeno, Z.Q. Mao, J. Kulda, and G.J. McIntyre, Phys. Rev. Lett. 85, 5412 (2000).
    [11] T.M. Rice and M. Sigrist, J. Phys.: Condens. Matter 7, L643 (1995).
    [12] S. Nishizaki, Y. Maeno, and Z.Q. Mao, J. Phys. Soc. Jpn. 69, 572 (2000). 29 References 30
    [13] I. Bonalde, B.D. Yano®, M.B. Salamon, D.J. Van Harlingen, E.M.E. Chia, Z.Q. Mao, and Y. Maeno, Phys. Rev. Lett. 85, 4775 (2000).
    [14] K. Ishida, H. Mukuda, Y. Kitaoka, Z.Q. Mao, Y. Mori, and Y. Maeno, Phys. Rev. Lett. 84, 5387 (2000).
    [15] H. Matsui, Y. Yoshida, A. Mukai, R. Settai, Y. Onuki, H. Takei, N. Kimura, H. Aoki, and N. Toyota, Phys. Rev. B 63, R60505 (2001).
    [16] C. Lupien, W.A. MacFarlane, C. Proust, L. Taillefer, Z.Q. Mao, and Y. Maeno, Phys. Rev. Lett. 86, 5986 (2001).
    [17] M. A. Tanatar, S. Nagai, Z.Q. Mao, Y. Maeno, and T. Ishiguro, Phys. Rev. B 63, 64505 (2001).
    [18] K. Izawa, H. Takahashi, H. Yamaguchi, Y. Matsuda, M. Suzuki, T. Sasaki, T. Fukase, Y. Yoshida, R. Settai, and Y. Onuki, Phys. Rev. Lett. 86, 2653 (2001).
    [19] M. Zhitomirsky and T.M. Rice, Phys. Rev. Lett. 87, 057001 (2001).
    [20] H. Won and K. Maki, Europhys. Lett. 52, 427 (2000).
    [21] T. Dahm, H. Won, and K. Maki, cond-mat/0006301.
    [22] Y. Hasegawa, K. Machida, and M. Ozaki, J. Phys. Soc. Jpn. 69, 336 (2000).
    [23] Koikegami, Y. Yoshida, and T. Yanagisawa, cond-mat/0303620.
    [24] W.C. Wu and R. Joynt, Phys. Rev. B 64, 100507 (2001).
    [25] G. Mahan, Many-Particle Physics, 3rd ed. (Kluwer Academic, New York, 2000).
    [26] J. M. Ziman, Principles of the theory of solids, 2nd ed. (Cambridge University Press, London, 1964).
    [27] J. Moreno and P. Coleman, Phys. Rev. B 53, R2995 (1996).
    [28] J. P. Rodriguez, Phys. Rev. Lett. 55, 250 (1985).
    [29] D.K. Morr, P.F. Trautman, and M.J. Graf, Phys. Rev. Lett. 86, 5978 (2001).
    [30] M.B. Walker, M.F. Smith, and K.V. Samokhin, Phys. Rev. B 65, 014517 (2001).

    QR CODE