研究生: |
魏廷宇 Wei, Ting-Yu |
---|---|
論文名稱: |
利用質譜技術監控以及鑑定重組蛋白中間產物之雙硫鍵變化 Monitoring protein refolding process by analyzing the disulfide bonds of intermediates using mass spectrometry |
指導教授: |
陳頌方
Chen, Sung-Fang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 145 |
中文關鍵詞: | 固相胜肽合成 、蛋白質重組 、雙硫鍵 、質譜 、雙甲基化 、RADAR |
英文關鍵詞: | Solid phase peptide synthesis, Refolding, Disulfide Bond, Mass spectrometry, Dimethyl labeling, RADAR |
DOI URL: | https://doi.org/10.6345/NTNU202204353 |
論文種類: | 學術論文 |
相關次數: | 點閱:101 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雙硫鍵是維持蛋白質活性及結構穩定性的主要轉譯修飾官能基。近幾年,固相胜肽合成技術已被廣泛應用於蛋白質藥物生產平台,但仍需透過雙硫鍵重組方能取得含正確結構及活性的產物。因此,一個能快速分析雙硫鍵的工具對於製程開發將有極大助益,也可作為蛋白質藥物必要的品管流程。生物毒素能專一的作用細胞受體,其作用機制是新型藥物開發研究的對象,本研究以固相胜肽合成之心臟蛇毒蛋白 (Cardiotoxin) 為標的,以質譜搭配RADAR軟體分析蛋白重組過程之雙硫鍵變化。藉由之雙硫鍵分析資訊,優化蛋白重組條件,純化出含正確雙硫鍵連結之產物。此外,結構分析與蛋白質活性測試結果,皆顯示重組心臟蛇毒蛋白具有與天然蛇毒蛋白質有相似β摺疊之二級結構與穿透細胞膜之活性。然而,重組過程產生之雙硫鍵錯接蛋白,則呈現不規則結構且不具活性。
整體而言,以質譜搭配RADAR軟體可快速分析重組蛋白的雙硫鍵鍵結位點,雙硫鍵分析資訊可作為蛋白藥物的品管資料。此平台可用於中間產物的分析,藉由雙硫鍵分析資訊優化重組條件,未來可應用於製藥產業對於製造富含多半胱胺酸之生物製劑樣品。
Disulfide bond is one of major post translation modifications for protein skeleton construction and folding maintainess. Recently, using solid phase peptide synthesis (SPPS) to generate peptide drug has been applied in pharmaceutical industry. For cysteine-rich peptides, analysis of correct disulfide bonds can be challenging. In this study, a well-developed platform using mass spectrometry was applied to profile the disulfide linkages of a synthetic peptide toxin, cardiotoxin A3 (composed by 60 amino acids with 4 disulfide bonds), during the refolding process. The bio-active cardiotoxin A3 product with correct folding was obtained by using an optimized dilution refolding method with the presence of GSSG/GSH in weak alkaline condition (phosphate buffer, pH 7.5, containing 1:3 mM ratio of GSSG/GSH). Based on the MS data, we were able to determine the protein fraction that performs exact disulfide linkage patterns as those found in native CTXA3, and optimize the manufacturing condition for peptide production. The further assays proved that the synthetic peptide product exhibited similar biochemical property and cell penetration activity as native one. The study results indicate that bioactive peptides with correct disulfide linkages could be obtained from SPPS approach with appropriate folding condition will be beneficial for the manufacturing of cysteine-rich biologics in biopharmaceutical industry. Eventually, MS-based disulfide analysis platform can provide significant information for protein structure-function study, and be the examination tool for cystein-rich bioproduct qualification.
1. Yano, H.; Kuroda, S.; Buchanan, B. B., Disulfide proteome in the analysis of protein function and structure. Proteomics 2002, 2, 1090–1096.
2. Arolas, J. L.; Sanglas, L.; Lorenzo, J.; Bronsoms, S.; Aviles, F. X., Insights into the two-domain architecture of the metallocarboxypeptidase inhibitor from the Ascaris parasite inferred from the mechanism of its oxidative folding. Biochemistry 2009, 48 (34), 8225-32.
3. Anfinsen, C. B., Principles that govern the folding of protein chains. Science 1997, 181 (4096), 223-230.
4. Narayan, M.; Welker, E.; Wedemeyer, W. J.; Scheraga, H. A., Oxidative folding of proteins. Accounts of Chemical Research 2000, 33, 805-812.
5. Kilian, T. M.; Beck-Sickinger, A. G., Recombinant expression and characterization of biologically active protein delta homolog 1. Protein Expression and Purification 2015, 110, 72-78.
6. Lin, J. L.; Ruaan, R. C.; Hsieh, H. J., Refolding of partially and fully denatured lysozymes. Biotechnology Letters 2007, 29, 723-729.
7. Amirzada, M. I.; Yu, M.; Gong, X.; Chen, Y.; Zhu, R.; Lei, J.; Jin, J., Cost-effective production of recombinant human interleukin 24 by lactose induction and a two‑step denaturing and one‑step refolding method. Journal of Industrial Microbiology & biotechnology 2014, 41, 135-142.
8. Dangi, A. K.; Rishi, P.; Tewari, R., Enhancing the yield of active recombinant chitobiase by physico-chemical and in vitro refolding studies. Protein J 2016, 35 (1), 72-79.
9. Vemula, S.; Dedaniya, A.; Ronda, S. R., In vitro refolding with simultaneous purification of recombinant human parathyroid hormone (rhPTH 1-34) from Escherichia coli directed by protein folding size exclusion chromatography (PF-SEC): implication of solution additives and their role on aggregates and renaturation. Analytical and Bioanalytical Chemistry 2016, 408 (1), 217-229.
10. Vemula, S.; Dedaniya, A.; Thunuguntla, R.; Mallu, M. R.; Parupudi, P.; Ronda, S. R., Simplified in vitro refolding and purification of recombinant human granulocyte colony stimulating factor using protein folding cation exchange chromatography. Journal of Chromatography. A 2015, 1379, 74-82.
11. Liu, Y.; Prigozhin, M. B.; Schulten, K.; Gruebele, M., Observation of complete pressure-jump protein refolding in molecular dynamics simulation and experiment. Journal of the American Chemical Society 2014, 136 (11), 4265-72.
12. Gautam, S.; Dubey, P.; Rather, G. M.; Gupta, M. N., Non-chromatographic strategies for protein refolding. Recent Patents on Biotechnology 2012, 6, 57-68.
13. Asad, S.; Dabirmanesh, B.; Ghaemi, N.; Etezad, S. M.; Khajeh, K., Studies on the refolding process of recombinant horseradish peroxidase. Molecular Biotechnology 2013, 54, 484–492.
14. Sun, H.; Wu, G. M.; Chen, Y. Y.; Tian, Y.; Yue, Y. H.; Zhang, G. L., Expression, production, and renaturation of a functional single-chain variable antibody fragment (scFv) against human ICAM-1. Brazilian Journal of Medical and Biological Research 2014, 47 (7), 540-547.
15. Yuan, J.; Zhou, H.; Yang, Y.; Li, W.; Wan, Y.; Wang, L., Refolding and simultaneous purification of recombinant human proinsulin from inclusion bodies on protein-folding liquid-chromatography columns. Biomedical chromatography : BMC 2015, 29 (5), 777-782.
16. Wang, L.; Geng, X., Protein renaturation with simultaneous purification by protein folding liquid chrmatography: recent developments. Amino Acids 2014, 46, 153-165.
17. Singh, A.; Upadhyay, V.; Upadhyay, A. K.; Singh, S. M.; Panda, A. K., Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microbial Cell Factories 2015, 14 (41).
18. Swietnicki, W., Folding aggregated proteins into functionally active forms. Current Opinion in Biotechnology 2006, 17 (4), 367-372.
19. Mamathambika, B. S.; Bardwell, J. C., Disulfide-linked protein folding pathways. Annual Review of Cell and Developmental Biology 2008, 24, 211-235.
20. Chang, J. Y., Controlling the speed of hirudin folding. The Biochemical Journal 1994, 300 ( Pt 3), 643-650.
21. Chang, J. Y., Evidence for the underlying cause of diversity of the disulfide folding pathway. Biochemistry 2004, 43 (15), 4522-4529.
22. Udgaonkar, J. B.; Baldwin, R. L., NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature 1998, 335, 694-669.
23. Rothwarf, D. M.; Scheraga, H. A., Equilibrium and kinetic constants for the thiol-disulfide interchange reaction between glutathione and dithiothreitol. Proceedings of the National Academy of Sciences of the United States of America 1992, 89 (17), 7944-7948
24. Salamanca, S.; Chang, J. Y., Unfolding and refolding pathways of a major kinetic Trap in the oxidative folding of α-Lactalbumin. Biochemistry 2005, 44, 744-750.
25. Chang, J. Y., Diverse pathways of oxidative folding of disulfide proteins: underlying causes and folding models. Biochemistry 2011, 50 (17), 3414-3431.
26. Ruoppolo, M.; Freedman, R. B.; Pucci, P.; Marino, G., Glutathione-dependent pathways of refolding of RNase T1 by oxidation and disulfide isomerization: catalysis by protein disulfide isomerase. Biochemistry 1996, 35 (42), 13636-13646.
27. Chang, J. Y.; Li, L., Pathway of oxidative folding of α-Lactalbumin a model for illustrating the diversity of disulfide folding pathways. Biochemistry 2002, 41 (26), 8405-8413.
28. Pantoja-Uceda, D.; Arolas, J. L.; Aviles, F. X.; Santoro, J.; Ventura, S.; Sommerhoff, C. P., Deciphering the structural basis that guides the oxidative folding of leech-derived tryptase inhibitor. The Journal of Biological Chemistry 2009, 284 (51), 35612-35620.
29. Lin, C. C. J.; Chang, J. Y., Pathway of oxidative folding of secretory leucocyte protease inhibitor: An 8-disulfide protein exhibits a unique mechanism of folding. Biochemistry 2006 45, 6231-6240.
30. Ito, L.; Okumura, M.; Tao, K.; Kasai, Y.; Tomita, S.; Oosuka, A.; Yamada, H.; Shibano, T.; Shiraki, K.; Kumasaka, T.; Yamaguchi, H., Glutathione ethylester, a novel protein refolding reagent, enhances both the efficiency of refolding and correct disulfide formation. Protein J 2012, 31 (6), 499–503.
31. Peternel, S.; Komel, R., Active protein aggregates produced in Escherichia coli. International Journal of Molecular Sciences 2011, 12, 8275-8287.
32. Baneyx, F.; Mujacic, M., Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology 2004, 22 (11), 1399-1408.
33. Pal, S. K.; Gomes, A.; Dasgupta, S. C.; Gomes, A., Snake venom as therapeutic agent: From toxin to drug develpment. Indian Journal of Experimental Biology 2002, 40, 1353-1358.
34. Sivaraman, T.; Kumar, T. K. S.; Yu, C., Investigate of the structural stability of cardiotoxin analogue III from the Taiwan cobra bu hydrogen-deuterium exchange kinetics. Biochemistry 1999 38, 9899-9905.
35. Merrifield, R. B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society 1963, 85, 2149-2154.
36. Paloma, J. M., Solid-phase peptide synthesis: an overview focused on the preparation of biologically relevant peptides. RSC Advances 2014, 4, 32658-32672.
37. Kumara, T. K. S.; Yanga, P. W.; Lina, S. H.; Wub, C. Y.; Leic, B.; Lob, S. J.; Tua, S.-C.; Yu, C., Cloning, direct expression, and purification of a snake venom cardiotoxin in Escherichia coli. Biochemical and Biophysical Research Communications 1996, 219 (2), 450-456.
38. Mourier, G.; Servent, D.; Justin, S. Z.; Me´nez, A., Chemical engineering of a three-fingered toxin with anti-α7 neuronal acetylcholine receptor activity. Protein Engineering 2000, 13, 217-225.
39. Balduino, K. N.; Spencer, P. J.; Malavasi, N. V.; Chura-Chambi, R. M.; Lemke, L. S.; Morganti, L., Refolding by high pressure of a toxin containing seven disulfide bonds: Bothropstoxin-1 from Bothrops jararacussu. Molecular Biotechnology 2011, 48, 228-234.
40. Yi, E. C.; Lee, H.; Aebersold, R.; Goodlett, D. R., A microcapillary trap cartridge-microcapillary high-performance liquid chromatography electrospray ionizaton emitter device capable of peptide tandem mass spectrometry at the attomole level on an ion trap mass spectrometer with automated routine operation. Rapid Communications in Mass Spectrometry 2003, 17, 2098-2098.
41. Fenn, J. B.; Mann, M.; Meng, C. K.; F., W. S.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules Science 1989, 246 (4926), 64-71.
42. El-Aneed, A.; Cohen, A.; Banoub, J., Mass spectrometry, review of the basics: Electrospray, MALDI, and commonly used mass analyzers. Applied Spectroscopy Reviews 2009, 44 (3), 210-230.
43. Sesták, J.; Moravcová, D.; Kahle, V., Instrument platforms for nano liquid chromatography. Journal . A 2015, 1421, 2-17.
44. Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry. Analytical Chemistry 2003, 75, 4646-4658.
45. Wells, J. M.; McLuckey, S. A., Collision-induced dissociation (CID) of peptides and proteins. Methods in Enzymology 2005, 402, 148-185.
46. Mamyrin, B. A.; Shmikk, D. V., The linear mass reflectron. Soviet Physics, JETP 1979, 49 (5), 762-764.
47. Wiza, J. L., Microchannel plate detectors. Nuclear Instruments and Methods in Physics Research 1979, 162, 587-601.
48. Mortz, E.; O'Connor, P. B.; Roepstorff, P.; Kelleher, N. L.; Wood, T. D.; McLafferty, F. W.; Mann, M., Sequence tag identification of intact proteins by matching tanden mass spectral data against sequence data bases. Proceedings of the National Academy of Sciences of the United States of America 1996, 93 (16), 8264-8267.
49. Yates III, J. R.; Eng, J. K.; McCormack, A. L.; Schieltz, D., Method to correlate tandem mass spectra of modified peptides to amino acid sequences in protein database. Analytical Chemistry 1995, 67, 1426-1436.
50. Mobli, M.; King, G. F., NMR methods for determining disulfide-bond connectivities. Toxicon 2010, 56, 849-854.
51. Zhang, W.; Marzilli, L. A.; Rouse, J. C.; Czupryn, M. J., Complete disulfide bond assignment of a recombinant immunoglobulin G4 monoclonal antibody. Analytical Biochemistry 2002, 311 (1), 1-9.
52. Massonnet, P.; Upert, G.; Smargiasso, N.; Gilles, N.; Quinton, L.; De Pauw, E., Combined use of ion mobility and collision-induced dissociation to investigate the opening of disulfide bridges by electron-transfer dissociation in peptides bearing two disulfide bonds. Analytical Chemistry 2015, 87 (10), 5240-5246.
53. Lin, C. C. J.; Chang, J. Y., Pathway of oxidative folding of bovine α-Interferon: Predominance of native disulfide-bonded folding intermediates. Biochemistry 2007, 46, 3925-3932.
54. Ruoppolo, M.; Torella, C.; Kanda, F.; Panico, M.; Pucci, P.; Marino, G.; Morris, H. R., Identification of disulphide bonds in the refolding of bovine pancreatic RNase A. Folding and Design 1996, 1 (5), 381-390.
55. Mhatre, R.; Woodard, J.; Zeng, C., Strategies for locating disulfide bonds in a monoclonal antibody via mass spectrometry. Rapid Communications in Mass Spectrometry 1999, 13 (24), 2503-2510.
56. Xu, H.; Zhang, L.; Freitas, M. A., Identification and characterization of disulfide bonds in proteins and peptides from tandem MS data by use of MassMatrix MS/MS search engine. Journal of Proteome Research 2007, 7 (01), 138-144.
57. Murad, W.; Singh, R.; Yen, T.-Y., An efficient algorithmic approach for mass spectrometry-based disulfide connectivity determination using multi-ion analysis. BMC Bioinformatics 2011, 12(suppl 1) (S12).
58. Choi, S.; Jeong, J.; Na, S.; Lee, H. S.; Kim, H. Y.; Lee, K. J.; Peak, E., New algorithm for the identification of intact disulfide linkages based on fragmentation characteristics in tandem mass spectra. Journal of Proteome Research 2010, 9, 626-635.
59. Huang, S. Y.; Wen, C. H.; Li, D. T.; Hsu, J. L.; Chen, C.; Shi, F. K.; Lin, Y. Y., Assignment of disulfide-linked peptides using automatic a1 ion recognition. Analytical Chemistry 2008, 80, 9135-9140.
60. Huang, S. Y.; Chen, S. F.; Chen, C. H.; Huang, H. W.; Wu, W. G.; Sung, W. C., Global disulfide bond profiling for crude snake venom using dimethyl labeling coupled with mass spectrometry and RADAR algorithm. Analytical Chemistry 2014, 86 (17), 8742-8750.
61. Hsu, J. L.; Huang, S. Y.; Chow, N. H.; Chen, S. H., Stable-isotope dimethyl labeling for quantitative proteomics. Analytical chemistry 2003, 75, 6843-6852.
62. Hsu, J. L.; Huang, S. Y.; Shiea, J. T.; Huang, W. Y.; Chen, S. H., Beyond quantitative proteomics: signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. Journal of Proteome Research 2005 4(1): , 101-108.
63. Go, E. P.; Zhang, Y.; Menon, S.; Desaire, H., Analysis of the disulfide bond arrangement of the HIV-1 envelope protein CON-S gp140 ΔCFI shows variability in the V1 and V2 regions. Journal of Proteome Research 2011, 10(2), 578-591.
64. Chang, J. Y.; Lu, B. Y.; Lin, C. C.; Yu, C., Fully oxidized scrambled isomers are essential and predominant folding intermediates of cardiotoxin-III. FEBS letters 2006, 580 (2), 656-660.
65. Chang, J. Y.; Kumar, T. K. S.; Yu, C., Unfolding and refolding of Cardiotoxin III elucidated by reversible conversion of the native and scrambled species. Biochemistry 1998, 37, 6745-6751.
66. Clark, E. D., Protein refolding for indusrial processes. Current Opinion in Biotechnology 2001, 12 (2), 202-207.
67. Hwang, C.; Sinskey, A. J.; Lodish, H. F., Oxidized redox state of glutathione in the endoplasmic reticulum. Science 1992, 257, 1496-1502.
68. Golovanov, A. P.; Hautbergue, G. M.; Wilson, S. A.; Lian, L. Y., A simple method for improving protein solubility and long-term stability. Journal of the American Chemical Society 2004, 126 (29), 8933–8939.