研究生: |
鐘琬茹 Zhong, Wan-Ru |
---|---|
論文名稱: |
以拉曼光譜技術及基質輔助雷射脫附游離質譜法分析藍色水彩顏料及應用在畫作上的鑑定 Analysis of blue watercolor paint and identification of its application in paintings by Raman spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry |
指導教授: |
林震煌
Lin, Cheng-Huang |
口試委員: |
何佳安
Ho, Ja-An 李君婷 Li, Chun-Ting 林震煌 Lin, Cheng-Huang |
口試日期: | 2022/06/15 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 拉曼光譜 、顏料 、水彩 、基質輔助雷射脫附游離質譜法 |
英文關鍵詞: | Raman spectroscopy, Pigments, Watercolor, MALDI-TOF MS |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202200956 |
論文種類: | 學術論文 |
相關次數: | 點閱:119 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以拉曼光譜技術建立各種藍色顏料的標準參考拉曼圖譜,使用的藍色顏料包括群青、酞青藍、鈷藍、普魯士藍、靛藍等,共8種常用的藍色顏料。再分析87支市售的藍色水彩顏料,發現較多水彩顏料是以群青及酞青藍為成分製作,甚至能發現有些藍色是與白色、紫色或綠色顏料混和而成。而有些無法以拉曼光譜儀直接測量到的顏料,以水洗方式純化顏料後再進行測量,洗去顏料中的甘油、阿拉伯膠等物質後,便能成功檢測出該顏料的拉曼光譜。
建立標準參考拉曼圖譜後,本論文也實際應用於畫作上的鑑定,分析由國立台灣師範大學文物保存中心提供的畫作,鑑定出畫作上的藍色顏料為群青,紅色顏料為朱紅,黃色顏料為鉻黃,而綠色顏料為普魯士藍混和鉻黃。
除了使用拉曼光譜技術之外,本論文也利用基質輔助雷射脫附游離飛行時間質譜技術(MALDI-TOF MS)針對藍色水彩顏料進行分析的研究,因為MALDI-TOF MS具有可大量分析樣品的優勢,未來可能用於大量分析未知顏料或建立顏料質譜數據庫,實驗結果發現酞青藍、陰丹酮藍以及靛藍顏料均能得到質譜圖。
In this paper, Raman spectroscopy is used to establish the standard reference Raman spectra of various blue pigments. The blue pigments used include ultramarine blue, phthalocyanine blue, cobalt blue, Prussian blue, indigo, etc., a total of 8 commonly used blue pigments. After analyzing 87 commercially available blue watercolor paints, it was found that most of the watercolor paints were made of ultramarine blue and phthalocyanine blue, and even some blues were mixed with white paints. For some pigments that cannot be directly measured by Raman spectroscopy, the pigments are purified by washing with water and then measured. After washing away the glycerin, gum arabic and other substances in the pigment, the Raman spectrum of the pigment can be successfully detected.
After the establishment of the standard reference Raman spectrum, this thesis was also applied to the identification of paintings. The paintings provided by the National Taiwan Normal University Cultural Relics Preservation Center were analyzed, and the blue pigments on the paintings were identified as ultramarine blue, the red pigments were cinnabar, the yellow pigment were chrome yellow, and the green pigment as Prussian blue mixed with chrome yellow.
In addition to using Raman spectroscopy, this paper also used matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to analyze blue watercolor pigments, because MALDI-TOF MS has the ability to analyze a large number of samples. In the future, it may be used to analyze a large number of unknown pigments or establish a pigment mass spectrometry database. The experimental results found that phthalocyanine blue, indanthrone blue and indigo pigments can all obtain mass spectra.
1. Debnath, N. C., Vaidya, S. A., Application of X-ray diffraction technique for characterisation of pigments and control of paints quality. Prog. Org. Coat., 2006, 56, 159–168.
2. Gražėnaitė E., Kiuberis J., Beganskienė A., Senvaitienė J., Kareiva A., XRD and FTIR characterisation of historical green pigments and their lead-based glazes. Chemija., 2014, 25 (4), 199-205.
3. Shearer, J. C., Peters, D. C., Hoepfner, G., Newton, T., FTIR in the service of art conservation. Anal. Chem., 1983, 55 (8), 874A-880A.
4. Carbó, M. T. D., Reig, F. B., Adelantado, J. V. G., Martínez, V. P., Fourier transform infrared spectroscopy and the analytical study of works of art for purposes of diagnosis and conservation. Anal Chim Acta, 1996, 330 (2-3), 207–215.
5. Corradini, M., Ferri, L., Pojana, G., Spectroscopic characterization of commercial pigments for pictorial retouching. J. Raman Spectrosc., 2021, 52, 35-58.
6. Kaszowska, Z., Malek, K., Staniszewska-Slezak, E., Niedzielska, K., Raman scattering or fluorescence emission? Raman spectroscopy study on lime-based building and conservation materials. Spectrochim. Acta A Mol. Biomol., 2016, 169, 7-15.
7. Schmidt, H., Indigo-100 Jahre industr Spectrosc ielle Synthese. Chem. unserer Zeit, 1997, 31 (3), 121-128.
8. White, S. N., Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals. Chem. Geol., 2009, 259 (3-4), 240-252.
9. Clark, R. J. H., Franks, M. L., The resonance Raman spectrum of ultramarine blue. Chem. Phys. Lett., 1975, 34 (1), 69-72.
10. Desnica V., Furić K., Schreiner M., Multianalytical characterisation of a variety of ultramarine pigments. E-Preservation Science, 2004, 1, 15-21.
11. Platania, E., Lofrumento, C., Lottini, E., Azzaro, E., Ricci, M., Becucci, M., Tailored micro-extraction method for Raman/SERS detection of indigoids in ancient textiles. Anal. Bioanal. Chem., 2015, 407(21), 6505–6514.
12. Ju, Z., Sun, J., Liu, Y., Molecular Structures and Spectral Properties of Natural Indigo and Indirubin: Experimental and DFT Studies. Molecules, 2019, 24 (21), 3831.
13. Ali, M. B., Barras, A., Addad, A., Sieber, B., Elhouichet, H., Férid, M., Szunerits S., Boukherroub, R., Co2SnO4 nanoparticles as a high performance catalyst for oxidative degradation of rhodamine B dye and pentachlorophenol by activation of peroxymonosulfate. Phys. Chem. Chem. Phys., 2017, 19 (9), 6569-6578.
14. Moretti, G., Gervais, C., Raman spectroscopy of the photosensitive pigment Prussian blue. J. Raman Spectrosc., 2018, 49 (7), 1198-1204.
15. Tian, Z., Zhu, C., Wang, J., Xia, Z., Liu, Y., Yuan, S., Size dependence of structure and magnetic properties of CoCr2O4 nanoparticles synthesized by hydrothermal technique. J. Magn. Magn. Mater., 2015, 377, 176-182.
16. Basova, T. V., Kiselev, V. G., Schuster, B.-E., Peisert, H., Chassé, T., Experimental and theoretical investigation of vibrational spectra of copper phthalocyanine: polarized single-crystal Raman spectra, isotope effect and DFT calculations. J. Raman Spectrosc., 2009, 40(12), 2080-2087.
17. Bouchard, M., Gambardella, A., Raman microscopy study of synthetic cobalt blue spinels used in the field of art. J. Raman Spectrosc., 2010, 41 (11), 1477-1485.
18. Jiang, X., Ma, Y., Chen, Y., Li, Y., Ma, Q., Zhang, Z., Wang, C.,Yang, Y., Raman analysis of cobalt blue pigment in blue and white porcelain: A reassessment. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 190, 61-67.
19. Casadio, F., Bezúr, A., Fiedler, I., Muir, K., Trad, T., Maccagnola, S., Pablo Picasso to Jasper Johns: a Raman study of cobalt-based synthetic inorganic pigments. J. Raman Spectrosc., 2012, 43 (11), 1761-1771.
20. Burgio, L., Clark, R. J. H., Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2001, 57 (7), 1491-1521.
21. Osticioli, I., Mendes, N. F. C., Nevin, A., Gil, F. P. S. C., Becucci, M., Castellucci, E., Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 73 (3), 525-531.
22. Brajkovic, M., Barac, M., Bogdanović Radović, I., Siketic, Z., Dependence of MeV TOF SIMS secondary molecular ion yield from phthalocyanine blue on primary ion stopping power. J. Am. Soc. Mass Spectrom., 2020, 31 (7), 1518-1524.
23. Chang, J., Cañamares, M. V., Aydin, M., Vetter, W., Schreiner, M., Xu, W., Lombardi, J. R., Surface-enhanced Raman spectroscopy of indanthrone and flavanthrone. J. Raman Spectrosc., 2009, 40 (11), 1557-1563.
24. Gotoshia, S. V., Gotoshia, L. V., Laser Raman and resonance Raman spectroscopies of natural semiconductor mineral cinnabar, α-HgS, from various mines. J. Phys. D: Appl. Phys., 2008, 41 (11), 115406.
25. De Waal, D., Micro-Raman and portable Raman spectroscopic investigation of blue pigments in selected Delft plates (17-20th Century). J. Raman Spectrosc., 2009, 40 (12), 2162-2170.
26. Chandra Babu, B., Rao, B. V., Ravi, M., Babu, S., Structural, microstructural, optical, and dielectric properties of Mn2+: Willemite Zn2SiO4 nanocomposites obtained by a sol-gel method. J. Mol. Struct., 2017, 1127, 6-14.
27. Soltzberg, L., Hagar, A., Krdaratikorn, S., Mattson, A., Newman, R., MALDI-TOF mass spectrometric identification of dyes and pigments. J. Am. Soc. Mass Spectrom, 2007, 18 (11), 2001-2006.
28. Kramell, A. E., García-Altares, M., Pötsch, M., Kluge, R., Rother, A., Hause, G., Hertweck, C., Csuk, R., Mapping Natural Dyes in Archeological Textiles by Imaging Mass Spectrometry. Scientific Reports, 2019, 9 (1).
29. Bersani, D., Lottici, P. P., Raman spectroscopy of minerals and mineral pigments in archaeometry. J. Raman Spectrosc., 2016, 47, 499-530.
30. Guo, Z., Zhang, Q., Zou, H., Guo, B., Ni, J., A Method for the Analysis of Low-Mass Molecules by MALDI-TOF Mass Spectrometry. Anal. Chem., 2002, 74 (7), 1637-1641.
31. Wang, P., Giese, R. W., Recommendations for quantitative analysis of small molecules by matrix-assisted laser desorption ionization mass spectrometry. J. Chromatogr. A, 2017, 1486, 35-41.
32. Kumar, P., No-Lee, H., Kumar, R., Synthesis of phase pure iron oxide polymorphs thin films and their enhanced magnetic properties. J. Mater. Sci.: Mater. Electron., 2014, 25 (10), 4553-4561.
33. Wang, L., Lu, X., Han, C., Lu, R., Yang, S., Song, X., Electrospun hollow cage-like α-Fe2O3 microspheres: synthesis, formation mechanism, and morphology-preserved conversion to Fe nanostructures. CrystEngComm, 2014, 16 (46), 10618-10623.
34. Jestel, N. L., Raman Spectroscopy. Process Analytical Technology, 2010, 195-243.
35. Burrafato, G., Calabrese, M., Cosentino, A., Gueli, A. M., Troja, S. O., Zuccarello, A., ColoRaman project: Raman and fluorescence spectroscopy of oil, tempera and fresco paint pigments. J. Raman Spectrosc., 2004, 35 (10), 879-886.
36. Lauridsen, C. B., Sanyova, J., Simonsen, K. P., Analytical study of modern paint layers on metal knight shields: The use and effect of Titanium white. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 124, 638-645.
37. Marshell J., FT Raman Spectrum and Band Assignments for Metal-Free Phthalocyanine (H2Pc). Mat. Sci. Res. India, 2010, 7 (1), 221-224.