簡易檢索 / 詳目顯示

研究生: 楊育峻
Yang, Yu-Jun
論文名稱: 添加金屬鉭對金屬鎢硫化形成二維硫化物製程的影響
Study of Tantalum Doping Effect on the Synthesis of Two-Dimensional Tungsten Disulfide
指導教授: 鍾朝安
Jong, Chao-An
李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 60
中文關鍵詞: 二階段合成共濺鍍技術摻雜二硫化鎢
英文關鍵詞: two-step synthesis, co-sputtering system, Doping, WS2
DOI URL: http://doi.org/10.6345/NTNU202100108
論文種類: 學術論文
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 層狀過渡金屬硫屬化合物是繼石墨烯被發掘後最為廣泛研究的一種奈米材料,它具有特殊的層狀原子排列結構而且具有的光電特性,已經在許多光電、電子、氣體或生物感測技術以及觸媒反應等方面被廣泛的研究。而這些特性可以透過改變堆疊的層數與材料成份的方式來加以變化。以這種方式調控的材料可以增加材料的適用範圍,但是如何加入雜質與相對應技術對於過渡金屬硫屬化合物的應用發展是一大挑戰。本論文將探討添加雜質元素的方法及雜質對二硫化鎢材料合成過程的影響。
    本實驗採用二階段方式合成二硫化鎢,首先利用共濺鍍技術成長含雜質的鎢合金薄膜前驅物,透過硫化反應而成最終的二維材料。透過鍍膜參數控制厚度與成份。利用 X光繞射儀、X光光電子儀、拉曼光譜儀來分別探討合成後材料的顯微結構、鍵結能量與鍵結的判斷。用原子力顯微鏡來分析合成後材料的表面形貌。透過這些分析數據比對,來探討合金添加對WS2 硫化反應過程最佳化的影響。

    Layered transition metal chalcogenides (TMDs) compounds are the most promising nano materials which are evaluated after graphene being discovered. TMDs have special two dimensional layered atomic structure, and its properties can be modified via the control of number of layers or changing its compositions. The controlled properties have been widely published in opto-electric, electronics, gas and bio sensing and catalytic research. Doping element and related techniques are a big challenge for current TMDs development. In this study, we will add some alloy element into the WS2 and study the doping effects on the process of film formation.
    Here, a two-step synthesis was applied for TMDs formation. That is, the alloy precursor film prepared by co-sputtering system and sulfurized. The composition and thickness were well controlled via the parameters setting. XRD, XPS and Raman were used for the microstructure, binding energy and bonding inspection, respectively. AFM was used for the surface morphology observation. Comparing the analysis results, the doping effect on forming optimal sulfurization process of doped WS2 film was discussed.

    Publication I 期刊論文 I 研討會論文 I 中文摘要 II Abstract III 致謝 IV 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 二維材料製作合成方式 2 1-2 摻雜技術 4 1-3 透過摻雜鉭(Ta)改變特性 6 第二章 研究動機 9 2-1 前驅物摻雜概念 9 第三章 驗流程與實驗分析設備 11 3-1 實驗流程 11 3-1-1二階段製程形成摻雜二維材料流程圖 11 3-2 實驗設備 13 3-2-1共濺鍍機(Co Sputtering) 13 3-2-2高溫二維材料反應爐管 14 3-2-3高解析共焦拉曼顯微鏡光譜儀 ( High Resolution Confocal Raman Microscope ) 15 3-2-4光致螢光光譜儀( Photoluminescence Spectrum, PL ) 16 3-2-5 X光能譜儀 (X-ray photoelectron spectroscopy, XPS) 17 3-2-6 X光繞射儀 (X-ray diffractometer, XRD) 18 3-2-7掃描探針顯微鏡(Scanning probe microscopy,SPM) 19 第四章 結果與討論 20 4-1 雜鉭(Ta)的二維硫化鎢(Ta-WS2)薄膜前驅物製備 20 4-2 合金濺鍍過程之氧汙染分析 23 4-3 不同結構之氧汙染分析 24 4-3-1多層結構之氧汙染分析 26 4-3-2降低氧參與反應製程 28 4-4 摻雜鉭(Ta)的二維硫化鎢(Ta-WS2) 一階升溫硫化製程 30 4-4-1摻雜鉭(Ta)的二維硫化鎢(Ta-WS2) 二階升溫硫化製程 35 4-4-2摻雜鉭(Ta)的二維硫化鎢(Ta-WS2)硫化製程溫度曲線最佳化 39 4-4-3 W金屬薄膜硫化製程 44 4-5 摻雜鉭(Ta)的二維硫化鎢(Ta-WS2) X光光電子能譜(XPS)分析 47 4-5-1摻雜鉭(Ta)的二維硫化鎢(Ta-WS2) X光繞射分析(XRD) 51 4-5-2摻雜鉭(Ta)的二維硫化鎢(Ta-WS2)光學特性 53 4-5-3(Ta)摻雜鎢(W)二維硫化物表面形貌變化 54 第五章 56 5-1總結 56 5-2未來工作 57 參考資料 58

    [1]A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures, ” Nature, vol. 499, No. 7459, pp. 419 (2013)
    [2]K. S. Novoselov, A. H. Castro Neto, “Two-dimensional crystals-based heterostructures: materials with tailored properties, ” Physical Scripta, vol. 2012, No.T146, pp. 1-6, (2012)
    [3]R. Shahzad, T. Kim, and S. W. Kang, “Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS2 synthesis, ” Thin Solid Films, vol. 53. No. 1, pp79-86. (2017)
    [4]J. Wilson, “LEED and AES study of the interaction of H2S and Mo(100)” Suf. Sci, vol. 53, No. 1, pp. 330-340 (1975)
    [5]Y. Zhang, Y. Zhang, Q. Ji, Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu and Y. Chen, “Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary”, ACS Nano, vol. 7, No. 10, pp. 8963-8971 (2013)
    [6]Z. Wang, P. Liu, Y. lto, S.Ning, Y. Tan, T. Fujiita, A. Hirata and M. Chen, “Chemical Vapor Deposition of Monolayer Mo1-x WxS2 Crystals with Tunable Band Gaps”, Scientific Reports, vol. 6, No.9, pp.21563 (2016)
    [7]Z. Qin, L. Loh, J. Wang, X. Xu, Q. Zhang, B. Haas, C. Alvarez, H. Okuno, J. Z. Yong, T. Schultz, N. Koch, J. Dan, S. J. Pennycook, D. Zeng, M. Bosman, and G. Eda, “Growth of Nb-Doped Monolayer WS2 by Liquid-Phase Precursor Mixing, ” ACS Nano, vol. 13, No. 8, pp. 8505-8511 (2019)
    [8]J. Suh, T. E. Park, D. Y. Lin, D. Fu, J. Park, H. J. Jung, Y. Chen, C. Ko, C. Jang, Y. Sun, R. Sinclair, J. Chang, S. Tongay, and J. Wu, “Doping against the native propensity of MoS2: degenerate hole doping by cation substitution, ” Nano Lett, vol. 14, No. 12, pp. 6976-6982 (2014)
    [9]P. A. G. O’Hare, B. M. Lewis, and B. A. Parkinson, “Standard molar enthalpy of formation by fluorine-combustion calorimetry of tungsten diselenide (WSe2). Thermodynamics of the high-temperature vaporization of WSe2. Revised value of the standard molar enthalpy of formation of molybdenite (MoS2), ” Thermodyn, vol. 20, No. 6, pp. 681-691 (1998)
    [10]F. Xiong, H. Wang, X. Liu, J. Sun, M. Brongersma, E. Pop, Y. Cui, “Li Intercalation in MoS2: In Situ Observation of Its Dynamics and Tuning Optical and Electrical Properties, ” Nano Lett, vol. 15, No. 10, pp. 6777-6784 (2015)
    [11]K. Dolui, I. Rungger, C. D. Pemmaraju, and S. Sanvito, “Possible doping strategies for MoS2 monolayers: An ab initio study, ” Phys. Rev, vol. 88, No.7, 075420 (2013)
    [12]M. R. Laskar, D. N. Nath, L. Ma, E. W. L. Il, C. H. Lee, T. Kent, Z. Yang, R. Mishra, M. A. Roldan, J. C. Idrobo, S. T. Pantelides, S. J. Pennycook, R. C. Myers, Y. Wu, S. Rajan, “p-type doping of MoS2 thin films using Nb, ” Appl. Phys. Lett. vol. 104, No. 9, 092104 (2014)
    [13]H. Xu, J. Zhu, G. Zou, W. Liu, X. Li, C. Li, G. H. Ryu, W. Xu, X. Han, Z. Giuo, J. H. Warner, and J. Wu, H. Liu, “Spatially Bandgap‐Graded MoS2(1−x)Se2x Homojunctions for Self‐Powered Visible–Near‐Infrared Phototransistors, ” Nano-Micro Lett, vol. 12, Art. no. 26, (2020)
    [14]W. Fu, Y. Chen, J. Lin, X. Wang, Q.Zeng, J. Zhou, L. Zheng, H. Wang, Y. He, Q. Fu, K. Suenaga, T. Yu, and Z. Liu, “Controlled Synthesis of Atomically Thin 1T-TaS2 for Tunable Charge Density Wave Phase Transitions, ” Chem. Mater, vol. 28, No. 21, pp. 7613-7618 (2016)
    [15]M. Ashby, T. Davies, and S. Gorsses, “The CES EduPack DB for Bulk Functional Materials, “ Granta Teaching Resources, Ver. 11, pp. 28. (2015) Available:www.grantadesign.com.educat
    -ion/teachingresources/
    [16] S. Das, M. Demarteau, and A. Roelofs, “Nb-doped single crystalline MoS2 field effect transistor “, APPLIED PHYSICS LETTERS 106, pp. 173506 (2015)
    [17]P. Y. Chen, M. Zhang, S. C. Huang, M. H. Lee, H. R. Hsu, Y. T. Ho, Y. C. Chu, C. A. Jong, J. Woo, “Reliable Doping Technique for WSe2 by W:Ta Co-Sputtering Process “ SNW, pp. 58-59 (2016)
    [18]SSD Lab, http://www.me.ntu.edu.tw/ssdl/data.php?id=106
    [19]TSRI, https://www.tsri.org.tw/tech/material/xps.jsp
    [20]TSRI, https://www.tsri.org.tw/tech/material/xrd.jsp
    [21]TSRI, https://www.tsri.org.tw/tech/material/d5000.jsp

    無法下載圖示 本全文未授權公開
    QR CODE