簡易檢索 / 詳目顯示

研究生: 蕭智偉
Hsiao, Chih-Wei
論文名稱: 主動式履帶機器人應用於連續樓梯攀爬與避障策略之研究
Study on Continuously Stair Climbing and Obstacle Avoidance Strategy for an Autonomous Tracked Robot
指導教授: 王偉彥
Wang, Wei-Yen
許陳鑑
Hsu, Chen-Chien
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 111
中文關鍵詞: 履帶式機器人樓梯攀爬避障深度感測器
英文關鍵詞: tracked robot, stair climbing, obstacle avoidance, depth sensor
論文種類: 學術論文
相關次數: 點閱:218下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是設計並開發自主式履帶機器人之軟體、硬體架構,能於室內未知的環境中自主式的執行連續樓梯攀爬與避障任務。履帶式機器人使用Xtion感測器取得深度影像資訊來辨識環境中的目標物,不需要經過複雜的影像運算,即可辨識出不同環境下目標物的位置和距離,並且在夜晚也能正確地辨識目標物;透過加裝的自製雲台組,Xtion可以依據實驗的需要進行角度調整,輔助履帶式機器人完成不同環境的任務。履帶式機器人使用單板電腦UDOO作為控制核心,使得體積更小、開發上有更多彈性,能依據不同實驗的需要加裝額外的感測器。本論文提出了一種影像避障的方式,依據Xtion感測器提供的障礙物距離資訊計算出機器人左、右履帶速度差與機器人旋轉半徑之間的關係,讓機器人能持續行走且順利的避開障礙物,並且設計了一系列的動作模式,來解決履帶式機器人連續樓梯攀爬的問題,讓機器人能夠在室內環境中任意的移動,最後經由實驗結果證實了自製履帶式機器人能夠實現跨樓層的樓梯攀爬與避障等任務。

    In this thesis, we mainly design and create software and hardware about an autonomous tracked robot, which is able to continuously climb stairs and avoid obstacles. The tracked robot uses a depth sensor, Xtion, to obtain data from depth image, and distinguishes targets in the environment. Moreover, without complicated computing, the tracked robot distinguishes targets' position and distance not only in different environment but also in dark conditions. By equipped the self-made cradle head, the sensor’s angle can be modified by users to help the tracked robot complete missions in different environments. The tracked robot’s core system is to use a single board computer, UDOO, whose characters are smaller volume and are convenient for all users to add extra sensors in different kinds of experiments. In this thesis, we announce a method about obstacles avoiding by using image processing, which accords obstacles’ distance data from the sensor and calculates the correlation between differential velocity of the tracked robot’s wheels and its rotation radius. This method let the tracked robot keep moving and avoiding obstacles successfully. Also, we design a series of action models to solve the problem when the tracked robot climbs stairs continuously, and make the tracked robot moves randomly in the environment. In the conclusion, experimental results show the tracked robot is able to climb stairs among different floors continuously and avoid obstacles when moving.

    摘  要 i ABSTRACT ii 誌  謝 iv 目  錄 v 圖 目 錄 viii 表 目 錄 xiii 第一章 緒論 1 1.1 前言 1 1.2 文獻探討 2 1.3 研究目的 5 第二章 履帶式機器人系統架構與設計 6 2.1 機器人機構 6 2.2 控制系統架構 9 2.3 馬達動力系統 11 2.3.1 馬達規格介紹 11 2.3.2 馬達控制器(含驅動) 13 2.3.3 馬達控制架構 14 2.4 電源系統 17 2.5 Xtion感測器與雲台組 19 2.5.1 Xtion感測器規格介紹 19 2.5.2 Xtion雲台組 20 2.5.3 OpenNI 2架構介紹 22 2.6 超音波感測器 25 第三章 履帶式機器人模式設計 27 3.1 機器人連續上樓模式設計 27 3.1.1 智慧型探索模式 27 3.1.1.1 樓梯特徵判斷 29 3.1.1.2 模糊控制之探索模式 32 3.1.2 連續上樓之對準模式 34 3.1.3 連續上樓之樓梯斜率計算模式 37 3.1.4 連續上樓之攀爬模式 40 3.2 機器人連續下樓模式設計 43 3.2.1. 連續下樓之探索模式 43 3.2.2. 連續下樓之對準模式 46 3.2.3. 連續下樓之攀爬模式 48 3.3 機器人避障模式設計 52 3.3.1. 障礙物深度影像處理 52 3.3.2. 基於旋轉半徑之機器人避障控制 56 第四章 實驗結果與討論 65 4.1 機器人上樓模式實驗 65 4.1.1 智慧型探索模式實驗 65 4.1.2 對準模式實驗 71 4.1.3 樓梯斜率計算模式實驗 73 4.1.4 攀爬模式實驗 74 4.2 機器人下樓模式實驗 77 4.2.1 探索模式實驗 77 4.2.2 對準模式實驗 78 4.2.3 攀爬模式實驗 79 4.3 連續樓梯攀爬實驗 82 4.3.1 連續上樓模式實驗 82 4.3.2 連續下樓模式實驗 87 4.3.3 自主式跨樓層實驗 91 4.3.4 夜間實驗 95 4.4 機器人避障模式實驗 97 4.4.1 模擬結果 97 4.4.2 實作結果 98 第五章 結論與未來展望 103 5.1 結論 103 5.2 未來展望 104 參考文獻 105 自  傳 110

    [1]J. Carlson and R. R. Murphy, “How ugvs physically fail in the field,” IEEE Trans.on Robotics, vol. 21, no. 3, pp. 423-437, June 2005.
    [2]Y. Liu and G. Liu, “Interaction analysis and online tip-over avoidance for a reconfigurable tracked mobile modular manipulator negotiating slopes,” IEEE/ASME Trans. on Mechatronics, vol. 15, no. 4, pp. 623-635, Aug. 2010.
    [3]A. I. Mourikis, N. Trawny, S. I. Roumeliotis, D. M. Helmick, and L. Matthies, “Autonomous stair climbing for tracked vehicles,” International Journal of Robotics Research, vol. 26, no. 7, pp. 737-758, July 2007.
    [4]Y. Li, C. Li, and P. Chen, “Research and design of control system for a tracked sar robot under coal mine,” in Proc. IEEE International Conference on Automation and Logistics Shenyang, China, Aug. 2009, pp. 1957-1961.
    [5]H. H. Zhao, X. G. Duan, and G. Yang, “Kinematics and dynamics modeling of a small mobile robot with tracked locomotion mode,” in Proc. IEEE International Conference on Robotics and Biomimetics, Tianjin, China, Dec.2010, pp. 14-18.
    [6]H. Y. Liu, W. J. Wang, and R.-J. Wang, “A course in simulation and demonstration of humanoid robot motion,” IEEE Trans. on Education, vol. 54, no. 2, pp. 255-262, May 2011.
    [7]P. Biber, S. Fleck, and T. Duckett, “3D modeling of indoor environments for a robotic security guard,” in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005.
    [8]J. N. K. Liu, M. Wang, and B. Feng, “Ibotguard: an internet-based intelligent robot security system using invariant face recognition against intruder,” IEEE Trans. on Systems, Man, and Cybernetics-Part C: Applications and Reviews, vol. 35, no. 1, Feb. 2005.
    [9]B. Wei, J.Gao, K. Li, and H. Chen, “Navigation and slope detection system design for autonomous mobile robot,” in Proc. Ninth International Conference on Electronic Measurement & Instruments,2009, pp.4-654-4-658.
    [10]MIT cheetah robot lands the running jump, URL: http://newsoffice.mit.edu/2015/cheetah-robot-lands-running-jump-0529
    [11]iRobot Home Cleaning Robots, URL: http://store.irobot.com/home/index.jsp
    [12]Pepper the robot, URL: https://www.aldebaran.com/en/a-robots/who-is-pepper
    [13]Amazon Robotics, URL: http://www.kivasystems.com/
    [14]Z.-G. Hou, A.-M. Zou, L. Cheng, and M. Tan, “Adaptive control of an electrically driven nonholonomic mobile robot via back stepping and fuzzy approach,” IEEE Trans. on Control Systems Technology, vol. 17, no. 4, pp. 803-815, July 2009.
    [15]J. A. Hesch, G. L. Mariottini, and S. I. Roumeliotis, “Descending-stair detection, approach, and traversal with an autonomous tracked vehicle,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, Oct. 2010, pp.18-22.
    [16]T. Suzuki and T. Kanada, “Measurement of vehicle motion and orientation using optical flow,” in Proc. IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, Tokyo, Japan, Oct. 1999, pp. 25-30.
    [17]Y. Wang, S. Fang, Y. Cao, H. Sun, “Image-based exploration obstacle avoidance for mobile robot,” Chinese Control and Decision Conference, Guilin, June 2009, pp. 3019-3023.
    [18]D. Hoiem, A. A. Efros, and M. Hebert, “Recovering surface layout from an image,” International Journal of Computer Vision, vol. 75, no. 1, pp. 151-172, 2007.
    [19]R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinect fusion: real-time dense surface mapping and tracking,” in Proc. IEEE International Symposium on Mixed and Augmented Reality Science and Technology, Basel, Switzerland, Oct. 2011, pp. 26 -29.
    [20]I. Vincent and Q. Sun, “A combined reactive and reinforcement learning controller for an autonomous tracked vehicle,” Robotics and Autonomous Systems, vol. 60, pp. 599-608, 2012.
    [21] Y. Cong, X. Li, J. Liu, and Y. Tang, “A stairway detection algorithm based on vision for ugv stair climbing,” in Proc. IEEE International Conference on Networking Sensing and Control, Sanya, April 2008, pp. 1806-1811.
    [22]Y. Liu and G. Liu, “Track-stair interaction analysis and online tip over prediction for a self-reconfigurable tracked mobile robot climbing stairs,” IEEE/ASME Trans. on Mechatronics, vol. 14, no. 5, pp. 528-538, Oct. 2009.
    [23]D. Koh, K. Hyun, and S. Kim, “Design of multi-joint tracked robot for adaptive uneven terrain driving,” in Proc. 4th International Conference on Autonomous Robots and Agents, Wellington, New Zealand, Feb 10-12, 2009, pp. 464-468.
    [24]M. Rous, H. Lupschen, and K. F. Kraiss, “Vision-based indoor. scene analysis for natural landmark detection,” in Proc. IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 2005, pp. 4642-4647.
    [25]E. M. Petriu, “Automated guided vehicle with absolute encoded guide-path,” IEEE Trans. on Robotics and Automation, vol. 7, no.4, pp. 562-565, Aug. 1991.
    [26]H. Y. Cheng, B. S. Jeng, P. T Tseng, and K.-C. Fan, “Lane detection with moving vehicles in the traffic scenes,” IEEE Trans. on Intelligent Transport System, vol. 7, no. 4, pp. 571-582, Dec. 2006.
    [27]K. Osugi, K. Miyauchi, N. Furui, and H. Miyakoshi, “Development of the scanning laser radar for ACC system,” JSAE review, vol. 20, no. 4, Oct. 1999, pp. 549-554.
    [28]H. T. shin, “Vehicles crash proof laser radar,” M.S. thesis, Opt. Sci. Center, National Central University, Chung Li City, Taiwan, R.O.C., 2000.
    [29]陳政傑,“自走式機器人之雷射定位與路徑規劃”,國立雲林科技大學,碩士論文,95年7月。
    [30]S. K. Park, J. H. Jung, and K. W. Lee, “Mobile robot navigation by circular path planning algorithm using camera and ultrasonic sensor,” in Proc. IEEE International Symposium on Industrial Electronics, July 2009, pp. 1749-1754.
    [31]A. Caarullo and M. Parvis, “An ultrasonic sensor for distance measurement in automotive applications,” IEEE Sensors Journal, vol. 1, no. 3, pp. 143-147, Oct. 2001.
    [32]K. Kaliyaperumal, S. Lakshmanan, and K. Kluge, “An algorithm for detecting roads and obstacles in radar images,” IEEE Trans. on Vehicular Technology, vol. 50, pp. 170-182, Jan. 2001.
    [33]施瑋翔,“視覺伺服應用於自走車追蹤避障之實現”,國立成功大學,碩士論文,97年7月。
    [34]李欽舜,“輪型行動機器人之運動控制與避障路徑規劃”,國立中央大學,碩士論文,93年6月。
    [35]S. Nedevschi, R. Danescu, D. Frentiu, T. Marita, F. Oniga, C. Pocol, R. Schmidt, and T. Graf, “High accuracy stereo vision system for far distance obstacle detection,” in Proc. IEEE Intelligent Vehicles Symposium, June. 2004, pp. 161-166.
    [36]A. Ohya, A. Kosaka, and A. Kak, “Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing,” IEEE Trans. on Robotics and Automation, vol. 14, pp. 969-978, Dec. 1998.
    [37]L. Y. Guo and Y. Q. Xia, “Color image stereo correspondence algorithm for obstacle detection,” in Proc. Chinese Conference on Pattern Recognition, Nanjing, Nov. 2009, pp. 1-4.
    [38]謝易錚,“以立體視覺實作盲人輔具系統”,國立中央大學,碩士論文,95年7月。
    [39]UDOO Dual and Quad – UDOO, URL: http://www.udoo.org/udoo-dual-and-quad/
    [40]翔寶電子實業有限公司,網址:http://www.1111motor.com/
    [41]擎翔實業有限公司CSIM,網址:http://csim.com.tw/products/slim9sys.html
    [42]多媒體產品 | Xtion PRO LIVE | ASUS 台灣,網址:https://www.asus.com/tw/Multimedia/Xtion_PRO_LIVE/overview/
    [43]OpenNI 2簡介 | Heresy's Space,網址:https://kheresy.wordpress.com/2012/12/21/basic-openni-2/
    [44]Cooper Maa: HC-SR04 超音波感測器介紹,網址:http://coopermaa2nd.blogspot.tw/2012/09/hc-sr04.html
    [45]arduino | Michele Marolla | Pagina 4, URL: https://tuixte.wordpress.com/tag/arduino-2/page/4/
    [46]曾建凱,“應用於樓梯偵測與攀爬之主動式履帶機器人開發”,國立臺灣師範大學工業教育學系碩士論文,102年7月。
    [47]I-H. Li, W.-Y. Wang, and C.-K. Tseng, “A Kinect-sensor-based tracked robot for exploring and climbing stairs,” International Journal of Advanced Robotic Systems, vol. 11, no. 80, pp. 1-11, 2014.
    [48]陳奕涵,“影像式單攝影機之機器人動態避障路徑系統”,國立臺灣師範大學應用電子科技學系碩士論文,102年7月。

    下載圖示
    QR CODE