簡易檢索 / 詳目顯示

研究生: 柯智馨
Ko, Chih-Hsin
論文名稱: 氧化釔摻鋯堆疊閘極介電層之特性以及漏電機制研究分析
The characteristics and leakage current mechanism analysis of MOS structure with Zr incorporated Y2O3 stack high-k dielectric layer
指導教授: 劉傳璽
Liu, Chuan-Hsi
屠名正
Lee, Chang-Chun
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 103
中文關鍵詞: 電晶體高介電係數氧化釔氮化鋯
英文關鍵詞: MOSFET, high-k, Y2O3, ZrN
論文種類: 學術論文
相關次數: 點閱:245下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化釔為一個高介電係數(~12-18)材料、寬的能隙(5.5 eV)、熱穩定度高,
    且與矽的相容度很高,但氧化釔容易與矽產生擴散形成界面層造成介電係數
    的下降。另一方面,由於氧化鋯結晶溫度較低,在高溫製程後會容易有結晶
    的現象,造成更大的漏電流產生。選擇氧化釔做為基礎,而後摻雜鋯至氧化
    釔中形成介電層,接著覆蓋一層氮化鋯做為一層阻擋層,希望能減少擴散的
    產生。最後鍍上一層鈦金屬,在不同溫度的快速熱退火之後,量測該電容器
    的電性與物性。
    本研究主要是利用共濺鍍的方式將鋯摻雜於氧化釔層,並且進行550 oC、
    700 oC 和850 oC 的快速熱退火, 接著將鋁電極沉積上去就會形成
    Al/Ti/ZrN/Y2O3+Zr/ Y2O3/p-Si 和Al/Ti/Y2O3+Zr/Y2O3/p-Si 兩種結構。實驗結果顯示摻雜鋯後,會使高介電係數介電層在高溫製程後會有結晶的現象產生,導致薄膜表面較粗糙;覆蓋一層氮化鋯,可以減少擴散現象的發生,但如果
    氮化鋯的厚度不足,還是會有擴散產生。另外,電性方面,本實驗有量測許
    多薄膜的電性數據包括在不同的量測溫度下所得到的漏電流值、由C-V 所
    得之介電係數、平帶電壓的偏移量、薄膜的漏電流傳導機制等。

    Y2O3 is a promising high-k (~12-18) material with wide band gap (5.5 eV), stable thermal stability, and low lattice mismatch between Y2O3 and Si. However, it is easy to form the interfacial layer because of the inter-diffusion between Y2O3 and Si, which lowers the dielectric constant. On the other hand, ZrO2 has also been reported that it starts to crystallize after high temperature process due to the low crystallization temperature and hence causes larger leakage current. The dielectric layer is formed by doping Zr into Y2O3, and ZrN is subsequently deposited to the dielectric layer to suppress the inter-diffusion. Finally, metal Ti is deposited to form the gate. Measurement of electrical characteristics and physical properties have been studied for the samples after rapid thermal annealing at different temperatures.
    In this study, zirconium (Zr) was doped into the Y2O3 layer through co-sputtering before rapid thermal annealing (RTA) at 550 oC, 700 oC, and 850oC and Al electrode formation. Two structures were formed: Al/Ti/ZrN/Y2O3+Zr/Y2O3/p-Si and Al/Ti/Y2O3+Zr/Y2O3/p-Si. The experimental results show that the Zr-incorporated Y2O3 thin film crystallizes and results in a rougher surface after a high temperature process. Moreover, the ZrN layer can suppress inter-diffusion; however, the inter-diffusion still occurs if the ZrN layer is not thick enough. On the other hand, the electrical properties of two structures were also analyzed and compared, including leakage current measured at 300-450 K, dielectric constant, flat-band voltage shift, current conduction behavior, and leakage current mechanism.

    摘要 I Abstract II 致謝 III 總目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與方向 2 1.3 論文架構 3 第二章 文獻探討 4 2.1金氧半場效電晶體的陷阱電荷 4 2.2高介電係數材料 7 2.2.1高介電係數氧化層材料 HfO2 10 2.2.2高介電係數氧化層材料 ZrO2 15 2.2.3高介電係數氧化層材料 Y2O3 26 2.2.4高介電係數氧化層材料 La2O3 31 2.3 MOS電容器漏電流機制特性與分析 36 2.3.1蕭基發射 36 2.3.2普爾-夫倫克爾發射 38 2.4總結 40 第三章 實驗設計 41 3.1實驗原理 42 3.1.1濺鍍原理 42 3.1.2快速熱退火 (Rapid thermal annealing) 44 3.2實驗過程與實驗參數 46 3.3電性測量以及物性測量 48 3.3.1原子力顯微鏡 (Atomic Force Microscope, AFM ) 49 3.3.2穿透式電子顯微鏡 ( Transmission Electron Microscope, TEM) 50 3.4總結 52 第四章 結果與討論 53 4.1 電性量測分析 53 4.1.1 電流-電壓(I-V)之電性量測 53 4.1.2 電容-電壓(C-V)之電性量測 59 4.2物性量測分析 66 4.2.1 原子力顯微鏡 (Atomic Force Microscope, AFM ) 66 4.2.2 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM ) 72 4.2.3 X光繞射儀 ( X-ray diffraction, XRD) 76 4.3漏電機制分析 83 4.3.1蕭基發射(Schottky emission)漏電流機制 83 4.3.2普爾-夫倫克爾發射(Poole-Frenkel emission)漏電流機制 88 第五章 結論與未來展望 93 5.1 結論 93 5.2 未來展望 95 參考文獻 96

    劉傳璽,陳進來,第三版,半導體物理元件與製程-理論與實務,五南文化出版社,2006。
    B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon”, IEEE Transactions on Electron Devices, Vol. 27, pp. 606-608 (1980).
    B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge”, Journal of the Electrochemical Society Vol. 114, pp. 266-274 (1967).
    L. Kang, B. Hun Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K.Onishi, and J. C. Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric”, IEEE Electron Device Letters, Vol. 21, pp.181-183 (2000).
    H. S. Choi, K. S. Seol, D. Y. Kim, J. S. Kwak, C. S. Son, and I. H. Choi, “Thermal treatment effects on interfacial layer formation between ZrO2 thin films and Si substrates”, Vacuum, Vol. 80, pp. 310–316 (2005).
    S. Abermann, O. Bethge, C. Henkel, and E. Betagnolli, “Atomic layer deposition of ZrO2/La2O3 high-k dielectrics on germanium reaching 0.5 nm equivalent oxide thickness”, Journal of Applied Physics, Vol. 94, pp. 262904 (2009).
    G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-gate dielectrics: Current status and materials properties considerations”, Journal of Applied Physics, Vol. 89, pp. 5243 (2001).
    J. Robertson, “Electronic structure and band offsets of high-dielectric-constant gate oxides”, Journal of the Electrochemical Society, Vol. 114, pp. 266-274 (1967).
    H. X. Xu, J. P. Xu, C. X. Li, and P. T. Lai, “Electrical properties of Ge metal-oxide-semiconductor capacitors with La2O3 gate dielectric annealed in different ambient”, Thin Solid Films, Vol. 518, pp. 6962-6965 (2010).
    K. C. Lin, J. Y. Chen, H. W. Hsu, H. W. Chen, and C. H. Liu, “Leakage current condition behaviors of 0.65 nm equivalent-oxide-thickness HfZrLaO gate dielectrics”, Solid-State Electronics, Vol. 77, pp. 7-11 (2012).
    S. Pan, S. J. Ding, Y. Huang, Y. J. Huang, D. W. Zhang, L. K. Wang, and R. Liu, “High-temperature conduction behaviors of HfO2/TaN-based metal-insulator-metal capacitors”, Journal of Applied Physics, Vol. 102, pp. 073706 (2007).
    C. H. Fu, K. S. Chang-Liao, Y. A. Chang, Y. Y. Hsu, T. H. Tzeng, T. K. Wang, D. W. Heh, P. Y. Gu, and M. J. Tsai, “A low gate leakage current and small equivalent oxide thickness MOSFET with Ti/HfO2 high-k gate dielectric”, Microelectronic Engineering, Vol. 88, pp. 1309-1311 (2011).
    J. Robertson, “Band offsets of wide band gap oxides and implications for future electronic devices”, Journal of Vacuum Science & Technology B, Vol. 18, pp. 1785 (2000).
    P. C. Juan, J. H. Lu, and M. W. Lu, “Improvement on reliability properties of metal-ferroelectric (BiFeO3)-insulator (HfO2)-semiconductor sructures fabricated by oxygen-incorporated magnetron sputtering”, Journal of the Electrochemical Society, Vol. 155, pp. 991-994 (2008).
    K. S. Min, C. Park, C. Y. Kang, C. S. Park, B. J. Park, Y. W. Kim, B. H. Lee, J. C. Lee, G. Bersuker, P. Kirsch, R. Jammy, and G. Y. Yeom, “Improvement of metal gate/high-k dielectric CMOSFETs characteristics by atomic layer etching of high-k gate dielectric”, Solid-State Electronics, Vol. 82, pp. 82-85 (2013).
    C. H. An, M. S. Lee, J. Y. Choi, and H. Kim, “Change of the trap energy levels of atomic layer deposited HfLaOx films with different La concentration”, Applied Physics Letters, Vol. 94, pp. 262901 (2009).
    C. H. Liu, H. W. Chen, S. Y. Chen, H. S. Huang, and L. W. Cheng, “Current conduction of 0.72 nm equivalent-oxide-thickness LaO/HfO2 stacked gate dielectrics”, Applied Physics Letters, Vol. 95, pp. 012103 (2009).
    K. Yamamoto, S. Hayashi, M. Kubota, and M. Niwa, “Effect of Hf metal predepositon on the properties of sputtered HfO2/Hf stacked gate dielectrics”, Journal of Applied Physics, Vol. 81, pp. 2053 (2002).
    X. P. Wang, C. Shen, M. F. Li, H. Y. Yu, Y. Sun, Y. P. Feng, A. Lim, H. W. Sik, A. Chin, Y.C. Yeo, P. Lo, and D. L. Kwong, “Dual metal gates with band-edge work functions on Novel HfLaO high-k gate dielectric”, in VLSI Symposium Technical Digest, pp. 9-10 (2006).
    X. P. Wang, M. F. Li, C. Ren, X. F. Yu, C. shen, H. H. Ma, A. Chin, C. X. Zhu, J. Ning, M. B. Yu, and Dim-Lee Kwong, “Tuning effective metal gate work function by a novel gate dielectric HfLaO for nMOSFETs”, IEEE Electron Device Letters, vol. 27, pp.31-31 (2006).
    K. Kato, T. Saito, S. Shibayama, M. Sakashita, W. Takeuchi, N. Taoka, O. Nakatsuka, and S. Zaima, “Stabilized formation of tetragonal ZrO2 thin film with high permittivity”, Thin Solid Films, Vol. 557, pp. 192-196 (2014).
    B. Kra´lik, E. K. Chang, and S. G. Louie, “Structural properties and quasiparticle band structure of zirconia”, Physical Review B, Vol. 57, pp. 7027 (1998).
    W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, and J. C. Lee, “Electrical and reliability characteristics of ZrO2 deposited directly on Si for gate dielectric application”, Journal of Applied Physics, Vol. 77, pp. 3269 (2000).
    T. S. Jeon, J. M. White, and D. L. Kwong, “Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si (100)”, Journal of Applied Physics, Vol. 78, pp. 368 (2001).
    W. J. Qi, R. Nieh, E. Dharmarajan, R. H. Lee, Y. Jeon, L.Kang, K. Onishi, and J. C. Lee, “Ultrathin zirconium silicate film with good thermal stability for alternative gate dielectric application”, Journal of Applied Physics, Vol. 77, pp. 1704 (2000).
    W. B. Bluemental, “The chemical behavior of zirconium”, Journal of the American Chemical Society, pp. 201-219 (1958).
    T. Yamaguchi, H. Satake, N. Fukushima, and A. Toriumi, “Band diagram and carrier conduction mechanism in ZrO2/Zr-silicate/Si MIS structure fabricated by pulsed-laser-ablation deposition”, in IEDM Technical Digest, pp. 19-22 (2000).
    C. H. Liu, and F. C. Chiu, “Electrical Characterization of ZrO2/Si Interface
    Properties in MOSFETs with ZrO2 Gate Dielectrics” IEEE Electron Device Letters, Vol. 26, pp. 62-64 (2007)
    C. H. Liu, P. C. Juan, Y. H. Chou, and H. W. Hsu, “The effect of lanthanum (La) incorporation in ultra-thin ZrO2 high-k gate dielectrics”, Microelectronic Engineering, Vol. 89, pp. 2-5 (2012).
    D. C. Hsu, I. Y. K. Chang, M. T. Wang, P. C. Juan, Y. L. Wang, and J. Y. M. Lee, “The positive bias temperature instability of n-channel metal-oxide-semiconductor field-effect transistors with ZrO2 gate dielectric”, Appl. Phys. 92, 202901(2008)
    M. Gutowski, J. E. Jaffe, C. L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, “Thermodynamic stability of high-k dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2”, Journal of Applied Physics, Vol. 80, pp. 1897 (2002).
    V. Swamya, N. A. Dubrovinskaya, and L. S. Dubrovinsky, “High-temperature powder x-ray diffraction of yttria to melting point”, Journal of Materials Research, Vol. 14, pp. 456-459 (1999).
    A. Huignard, A. Aron, P. Aschehoug, B. Viana, J. Thery, A. Laurent, and J. Perriere, “Growth by laser ablation of Y2O3 and Tm∶ Y2O3 thin films for optical applications”, Journal of Materials Chemistry, Vol. 10, pp. 549-554 (2000).
    R. J. Gaboriaud, F. Paumier, F. Pailloux, and P. Guerin, “Y2O3 thin films: internal stress and microstructure”, Materials Science and Engineering B, Vol. 109, pp. 34-38 (2004).
    V. H. Mudavakkat, V. V. Atuchin, V. N. Kruchinin, A. Kayani, and C. V. Ramana, “Structure, morphology and optical properties of nanocrystalline yttrium oxide (Y2O3) thin films”, Optical Materials, Vol. 34, pp. 893-900 (2012).
    R. J. Gaboriaud, F. Pailloux, P. Guerin, and F. Paumier, “Yttrium sesquioxide, Y2O3, thin films deposited on Si by ion beam sputtering: microstructure and dielectric properties”, Thin Solid Films, Vol. 400, pp. 106-110 (2001).
    R. J. Gaboriaud, F. Pailloux, P. Guerin, and F. Paumier, “Yttrium oxide thin films, Y2O3, grown by ion beam sputtering on Si”, Journal of Applied Physics, Vol. 33, pp. 2884 (2000).
    S. K. Kang, D. H. Ko, E. H. Kim, M. H. Cho, and C. N. Whang, “Interfacial reactions in the thin film Y2O3 on chemically oxidized Si(100) substrate systems”, Thin Solid Films, Vol. 353, pp. 8-11 (1999).
    R. H. Horng, D. S. Wuu, J. W. YU, and C. Y. Kung, “Effects of rapid thermal process on structural and electrical characteristics of Y2O3 thin films by r.f.-magnetron sputtering”, Thin Solid Films, Vol. 289, pp. 234-237 (1996).
    M. H. Tang, Y. C. Zhou, X. J. Zheng, Z. Yan, C. P. Cheng, Z. Ye, and Z. S. Hu, “Characterization of ultra-thin Y2O3 films as insulator of MFISFET structure”, Transactions of Nonferrous Metals Society of China, Vol. 16, pp. 63-66 (2006).
    A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, “High quality La2O3 and A12O3 gate dielectrics with equivalent oxide thickness 5-10Å”, in VLSI Symposium Technical Digest, pp. 16–17 (2000).
    Y. H. Wu, M. Y. Yang, A. Chin ,W. J. Chen, and C. M. Kwei, “Electrical Characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 Å”, IEEE Electron Device Letters, Vol. 21, pp. 341-343 (2000).
    L. G. Gao, K. B. Yin, L. Chen, H. X. Guo, Y. D. Xia, J. Yin, and Z. G. Liu, “The effect of Si surface nitridation on the interfacial structure and electrical properties of (La2O3)0.5(SiO2)0.5 high-k gate dielectric films”, Applied Surface Science, Vol. 256, pp. 90-95 (2009).
    Y. Kima, K. Miyauchia, S. I. Ohmia, K. Tsutsuia, and H. Iwaib, “Electrical properties of vacuum annealed La2O3 thin films grown by e-beam evaporation”, Microelectronics Journal, Vol. 36, pp. 41-49 (2005).
    G. Mavrou, S. Galata, P. Tsipas, A. Sotiropoulos, Y. Panayiotatos, A. Dimoulas, E. K. Evangelou, J. W. Seo, and C. Dieker, “Electrical properties of La2O3 and HfO2/La2O3 gate dielectrics for germanium metal-oxide-semiconductor devices”, Journal of Applied Physics, Vol. 103, pp. 014506 (2008).
    Y. Kim, S. I. Ohmi, K. Tsutsui, and H. Iwai, “Analysis of variation in leakage currents of Lanthana thin films”, Solid-State Electronics, Vol. 49, pp. 825-833 (2005).
    J. P. Maria, D. Wicaksana, A. I. Kingon, B. Busch, H. Schulte, E. Garfunkel, and T. Gustafsson, “High temperature stability in lanthanum and zirconia-based gate dielectrics”, Journal of Applied Physics, Vol. 90, pp. 3476 (2001).
    M. Copel, E. Cartier, and F. M. Ross, “Formation of a stratified lanthanum silicate dielectric by reaction with Si (001)”, Journal of Applied Physics, Vol. 78, pp. 1607 (2001).
    J. A. Ng, Y. Kuroki, N. Sugii, K. Kakushima1, S. I. Ohmi, K. Tsutsui,T. Hattori, H. Iwai, and H. Wong, “Effects of low temperature annealing on the ultrathin La2O3 gate dielectric; comparison of post deposition annealing and post metallization annealing”, Microelectronic Engineering, Vol. 80, pp. 206-209 (2005).
    S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Bojarczuk, and M. C. Copel, “Atomic beam deposition of lanthanumand yttrium-based oxide thin films for gate dielectrics”, Applied Physics Letter, Vol. 77, pp. 2710-2712 (2000).
    M. Yun, M. S. Kim, Y. D. Ko, T. H. Moon, J. H. Hong, J. M. Myoung, and I. Yun, “Effects of postmetallization annealing of high-k dielectric thin films grown by MOMBE”, Microelectronic Engineering, Vol. 77, pp. 48-54 (2005).
    C. H. Liu, H. W. Chen, S. Y. Chen, H. S. Huang, and L. W. Cheng, “Current conduction of 0.72 nm equivalent-oxide-thickness LaO/HfO2 stacked gate dielectrics”, Journal of Applied Physics, Vol. 95, pp. 012103 (2009).
    T. P. C. Juan, S. M. Chen, and J. Y. M. Lee, “Temperature dependence of the current conduction mechanisms in ferroelectric Pb (Zr0.53, Ti0.47) O3 thin films”, Journal of Applied Physics, Vol. 95, pp. 3120 (2004).
    C. H. An, M. S. Lee, J. Y. Choi, and H. Kim, “Change of the trap energy levels of the atomic layer deposited HfLaOx films with different La concentration”, Journal of Applied Physics, Vol. 94, pp. 262901 (2009).
    K. C. Lin, J. Y. Chen, H. W. Hsu, H. W. Chen, C. H. Liu, “Leakage current conduction behaviors of 0.65 nm equivalent-oxide-thickness HfZrLaO gate dielectrics”, Solid-State Electronics, Vol. 77, pp. 7-11 (2012).
    汪建民, “材料分析”, 中國材料科學學會, (1991).
    H. W. Chen, F. C. Chiu, C. H. Liu, S. Y. Chen, H. S. Huang, P. C. Juan and H. L. Hwang, “Interface Characterization and Current Conduction in HfO2-gated MOS capacitors”, Applied Surface Science, Vol. 254, pp. 6112-6115 (2008).
    W. Huang, G.P. Ru, C. Detavernier, R.L. Van Meirhaeghe, Y.L. Jiang, X.P. Qu and B.Z. Li, “Yttrium Silicide Formation and Its Contact Properties on Si(100)”, Microelectronic Engineering, Vol. 85, pp. 131-135 (2008).
    X. Cheng, Z. Qi, G. Zhang, H. Zhou, W. Zhang and M. Yin, “Growth and Characterization of Y2O3 Thin Films”, Physica B, Vol. 404, pp. 146-149 (2009).

    下載圖示
    QR CODE