研究生: |
連家顥 Lien, Chia-Hao |
---|---|
論文名稱: |
智能化對稱高速雙主軸研磨機開發與LED碳化鎢探針快速研削研究 Development of an intellectualized symmetric high-speed dual-spindle grinding machine and study on LED tungsten carbide probe speedy grinding |
指導教授: |
陳順同
Chen, Shun-Tong |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 157 |
中文關鍵詞: | 智能化 、對稱高速雙主軸 、LED碳化鎢探針 |
英文關鍵詞: | Intellectualization, Symmetric high-speed dual-spindle, LED probe |
論文種類: | 學術論文 |
相關次數: | 點閱:190 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在對LED電路偵測之碳化鎢探針的快速研磨成型,開發一部「智能化對稱高速雙主軸研磨機」。研究之初,先行開發「智能化對稱高速雙主軸研磨機」,並於系統上建構對稱高速雙主軸研削機構、線上線式放電削銳系統、線上研削力偵測與回饋系統、線上研削顫振偵測系統與線上次像素影像量測系統。對稱高速雙主軸搭載含硼聚晶鑽石磨輪,以啄式進給法(Peck feeding),對LED碳化鎢探針進行徑向快速研削成型。為獲致高效率研削,本研究提出三項「智能化」研削策略,一為「線上研削力判斷回饋」,藉由三軸位移平台電流感知研削力大小,即時調整研削進給率;二為「研削系統振動偵測回饋」,利用位移平台的位置誤差偵測,將意外因素造成的系統振動,予以抑制,以維持穩定研削;三為「線上次像素影像量測」,透過線上CCD擷取成型探針的影像,以進行探針輪廓量測及可能的補償再加工,故探針無須拆卸,可提高研磨精度,並省卻繁複校正時間。鑽石磨輪採「多重電阻電容放電迴路」之「線上線式放電削銳」法進行削銳,多重電阻電容放電迴路能提供高尖峰值與窄脈衝寬度的高頻放電電流,故可降低鑽石磨輪的石墨化及鈷熔出。實驗證實,磨輪轉數30,000 rpm,並啟動智能化線上研削力判斷回饋機制時,研削效率能提升32%,探針完成時間約1.9分鐘,和人工研磨相比,可提高15倍以上的工作效率,探針表面粗糙度可達Ra 0.296µm;而含硼聚晶鑽石磨輪組之可磨探針數(平均壽命)為46支。本研究深具商業化價值。
This study presents the development of an intellectualized symmetric high-speed dual-spindle grinding machine for LED probe made of tungsten carbide speedy grinding. First of all, an intellectualized symmetric high-speed dual-spindle grinding machine is designed. A set of symmetric high-speed dual-spindle, an in-situ Wire Electrical Discharge Dressing (WEDD) system, an in-situ Grinding Force Detection Feedback (GFDF) system, an in-situ Grinding Chattering Detection (GCD) system, and an in-situ Sub-Pixel Image Acquisition (SPIA) system are constructed on the grinding machine to achieve the intellectualization machining. The symmetric high-speed dual-spindle equips with a grinding wheel made of Boron-doped Polycrystalline Composite Diamond (BD-PCD) to speedy shaping the LED probe by symmetrically radial peck feeding grinding. Three strategies for intellectualization grinding are proposed in the study. The GFDF system, by which a grinding force is constantly detected from the stage current, gives real-time feedback to regulate the grinding feed-rate. By applying the in-situ GCD system, the position errors of stage is detected and suppressed to steady the grinding. The SPIA system provides for measuring the profile of LED probe on-machine, which achieves a high-precision on-line compensation and re-machining. The micro probe thus need not be unloaded and repositioned until all the planned tasks are completed, decrease tedious, time-consuming readjustment. Combining the in-situ WEDD system with the designed plural resistance-capacitances (pRC) relaxation circuit that can generate a current of high-frequency and high-peak with a short pulse train, the BD-PCD grinding wheels are precisely dressed on-machine, which reduces the amounts of cobalt precipitation and graphitizing of diamond. Experimental results demonstrate that the grinding performance can increase up to 32% when enabling the GFDF function under the grinding wheel’s rotation speed of 30,000 rpm. Comparing with manually made, the machining performance that the grinding time is about 1.9 minutes with a surface roughness of Ra 0.296μm for each probe can be enhanced up to 15 times when using the developed grinding machine tool. As a result, the tool life of the BD-PCD grinding wheel can be estimated at up to finish 46 pieces of LED probe. The developed technique provides a highly effective alternative for grinding hard-brittle, particularly LED probe made of tungsten carbide.
1. 許世杰,科學月刊第532期,科學月刊社,pp. 273-280。
2. S. Nakamura, “Zn-doped InGaN growth and InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Journal of Crystal Growth, vol. 145, Issues 1–4, pp. 911-917, 1994.
3. P. O’Shea, “LEDs in the Home: Challenges and Opportunities,” http://www.nanomarkets.net/Downloads/LEDPhosphors.pdf
4. G.E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, No. 1, (4pp), 1998.
5. “Test and Test Equipment,” The international Technology Roadmap for Semiconductors Edition, pp. 50-57, 2007.
6. “發光二極體元件之光學與電性量測方法,” CNS 15249, C3222, (3pp).
7. O. Weeden, “Probe Card Tutorial,” Keithley Instruments Inc., http://www.keithley.com
8. 瑞士SARIX:http://www.sarix.com
9. 日本Sodick:http://www.sodick.com
10. 德國KUGLER:http://www.kugler-precision.com/index.php?Home-EN
11. 美國Moore Nanotechnology Systems:http://www.nanotechsys.com/
12. T. Kurita, and M. Hattori, “Development of new-concept desk top size machine tool,” International Journal of Machine Tools & Manufacture, vol. 45, pp. 959–965, 2005.
13. S. Di, R. Huang, and G. Chi, “Study on Micro-machining by Micro-WEDM,” Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 615-619, 2006.
14. J. Corbett, D.J. Stephenson, J. Sweet, and W.J. Wills-Moren, “An ultra-stiff machine tool demonstrating a novel vibration resistant structure.”, Proc. 1st Int. euspen Conf, vol. 1, pp. 159-162, 1999.
15. J.C. Aurich, J. Engmann, G.M. Schueler, and R. Haberland, “Micro grinding tool for manufacture of complex structures in brittle materials,” CIRP Annals - Manufacturing Technology, vol. 58, pp. 311-314, 2009.
16. S.T. Chen, and H.Y. Yang, “Development of a multi-functional high-precision miniature machine tool,” The International Conference on Advances in Materials and Processing Technologies, 2010.
17. Z. Zhu, S. To, and S. Zhang, “Theoretical and experimental investigation on the nove lend-fly-cutting-servo diamond machining of hierarchical micro-nanostructures,” International Journal of Machine Tools & Manufacture, vol. 94, pp. 15-25, 2015.
18. H. Ohmori, and T. Nakagawa, “Mirror Surface Grinding of Silicon Wafers with Electrolytic In-Process Dressing,” CIRP Annals - Manufacturing Technology, vol. 39, Issue 1, pp. 329-332, 1990.
19. H. Ohmori, and T. Nakagawa, “Utilization of Nonlinear Conditions in Precision Grinding with ELID (Electrolytic In-Process Dressing) for Fabrication of Hard Material Components,” Annals of the ClRP, vol. 46, pp. 261-264, 1997.
20. H. Ohmori, W. Li, A. Makinouchi, and B.P. Bandyopadhyay, “Efficient and precision grinding of small hard and brittle cylindrical parts by the centerless grinding process combined with electro-discharge truing and electrolytic in-process dressing,” Journal of Materials Processing Technology, vol. 98, pp. 322-327, 2000.
21. A.A. Mokbel, and T.M.A. Maksoud, “Monitoring of the condition of diamond grinding wheels using acoustic emission technique,” Journal of Materials Processing Technology, vol.101, pp. 292-297, 2000.
22. H. Huang, and Y.C. Liu, “Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding,” International Journal of Machine Tools & Manufacture, vol. 43, pp. 811-823, 2003.
23. S. Sano, W. Pan, K. Suzuki, M. Iwai, and T. Uematsu, “Development of a fine grade PCD wheel for Precision and micro grinding using an ED-truing,” Asia Electrical Machining Symposium, 2007.
24. A. Abdullah, A. Pak, M. Farahi, and M. Barzegari, “Profile wear of resin-bonded nickel-coated diamond wheel and roughness in creep-feed grinding of cemented tungsten carbide,” Journal of Materials Processing Technology, vol. 183, pp. 165-168, 2007.
25. J.M. Derkx, A.M. Hoogstrate, J.J. Saurwalt, and B. Karpuschewski, “Form crush dressing of diamond grinding wheels,” CIRP Annals-Manufacturing Technology, vol. 57, pp. 349-352, 2008.
26. J.Y. Chen, J.Y. Shen, H. Huang, and X.P. Xu, “Grinding characteristics in high speed grinding of engineering ceramics with brazed diamond wheels,” Journal of Materials Processing Technology, vol. 210, pp. 899-906, 2010.
27. 黃眉欣,“高速研磨小角度微米探針”,國立虎尾科技大學,碩士論文, 2010。
28. Z.Y. Zhang, F.W. Huo, Y.Q. Wu, and H. Huang, “Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material,” International Journal of Machine Tools & Manufacture, vol. 51, pp. 18-24, 2011.
29. P.H. Lee, and S.W. Lee, “Experimental characterization of micro-grinding process using compressed chilly air,” International Journal of Machine Tools & Manufacture, vol. 51, pp. 201-209, 2011.
30. J.S. Kim, J.D. Hwang, and Y.G. Jung, “Development of twin wheel creep-feed grinding machine using continuous dressing for machining of aircraft rotary wing,” J. Cent. South Univ. Technol, pp. 704-710, 2011.
31. Y.M. Lim, and S.H. Kim, “An electrochemical fabrication method for extremely thin cylindrical micro pin,” International Journal of Machine Tools & Manufacture, vol. 41, pp. 2287-2296, 2001.
32. K. Kataoka, T. Itoh, K. Inoue, and T. Suga, “Multi-layer electroplated micro-spring array for MEMS probe card,” MEMS 17th IEEE International Conference, pp. 733-736, 2004.
33. Y.T. Chen, Y.S. Liao, and T.T. Chen, “Fabrication of arrayed microneedles by laser LIGA process,” Intl. Conference On Leading Edge Manufacturing in 21st Century, pp. 285-290, 2005.
34. N. Mohri, and T. Tani, “Micro-pin Electrodes Formation by Micro-Scanning EDM Process,” Annals of the CIRP, vol. 55, pp. 175-178, 2006.
35. 黃俊德,“微探針自動連續研磨機”,中華民國專利公報, TW 097117676,2008.
36. S.W. Lee, H.S. Shin, and C.N. Chu, “Fabrication of micro-pin array with high aspect ratio on stainless steel using nanosecond laser beam machining,” Applied Surface Science, vol. 264, pp. 653-663, 2013.
37. 楊士緯,“高頻振動輔助微線切割放電加工技術開發與高密度超高細長比精微陣列探針製作研究”,國立臺灣師範大學,碩士論文,2013。
38. 朱麒宇,“精微電加工法開發內皮層陣列腦波探針研究”,國立臺灣師範大學,碩士論文,2014。
39. C. Sommer, “Non-traditional machining handbook,” Advance Publishing, Inc., pp. 117-124, 2000.
40. 陳祈宏,“高效能精微線切割放電加工電源開發”,國立臺灣師範大學,碩士論文,2014。
41. S. Smith, “Microelectronic Circuits,” Oxford university press, International sixth edition, ISBN 0199738513.
42. 齋藤長男,放電加工機活用,賴耿陽 譯,復漢出版社, pp. 7-57, 1981。
43. S.T Chen, “A high-efficiency approach for fabricatingmass micro holes by batch micro EDM,” J. Micromech. Microeng, vol.17, pp. 1961-1970, 2007.
44. 王櫻茂,材料科學,三民書局,1972。
45. 劉傳璽,陳進來,半導體元件物理與製程:理論與實務二版,五南圖書,2007。
46. 陳信文,“單晶、鑽石與奈米材料”,科學發展第355期,pp. 34-37,2002。
47. K. Okano, Y. Akiba, T. Kurosu, M. Iida, and T. Nakamura, “Synthesis of B-doped diamond film,” Journal of Crystal Growth, vol. 99, pp. 1192-1195, 1990.
48. S.T. Chen and C.H. Chang, “Development of an ultrathin BD-PCD wheel-tool for in situ microgroove generation on NAK80 mold steel,” Journal of Materials Processing Technology, vol. 213, pp. 740-751, 2013.
49. 許彥夫,金屬切削原理與工具機,楊純智 譯,復文書局, pp. 213-233,1990。
50. 田中義信,津和秀夫,井川直哉,精密加工新技術全集,復漢出版社, pp. 146-188,1993。
51. S.T. Chen and Y.C. Lai, “A hybrid process of raining co-deposition and rotary wire spark erosion in the development of a custom CBN tool for making a biochip injection mold,” Journal of Materials Processing Technology, vol. 214, pp. 2784-2795, 2014.
52. B.K.A. Ngoi, and P.S. Sreejith, “Ductile Regime Finish Machining-A Review,” Int J Adv Manuf Technol, vol. 16, pp. 547-550 , 2000.
53. T. G. Bifano, T.A. Dow, and R.O. Scattergood, “Ductile-regime grinding: A new technology for machining brittle materials,” Journal of Engineering for Industry, vol. 113, pp. 184-189, 1991.
54. 謬品高 譯,無心磨. 工具機手冊之十五,金屬工業發展中心,pp. 1-8。
55. W.B. Rowe, “Principles of Modern Grinding Technology,” pp. 257-289, 2009.
56. Aerotech Inc., “THE UNIDEX 500 MOTION CONTROLLER AND WINDOWS SOFTWARE,” OPERATION & TECHNICAL MANUAL, Version 1.3, pp. 6-1, 2000.
57. J. Gradisek, A. Baus, E. Govekar, F. Klocke, and I. Grabec, “Automatic chatter detection in grinding,” International Journal of Machine Tools & Manufacture, vol. 43, pp. 1397-1403, Nov 2003.
58. T. Thaler, P. Potočnik, I. Bric, and E. Govekar, “Chatter detection in band sawing based on discriminant analysis of sound features,” Applied Acoustics, vol. 77, pp. 114-121, 2013.
59. S.D. Wu, P.H. Wu, C.W. Wu, J.J. Ding, and C.C. Wang, “Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and Support Vector Machine,” Entropy, vol. 14, pp. 1343-1356, 2012.
60. T. Ferreira, and W. Rasband, “ImageJ User Guide,” pp. 19, 2012.
61. F. Da, and H. Zhang, “Sub-pixel edge detection based on an improved moment,”Image and Vision Computing, vol. 28 (12), pp. 1645-1658, 2010.
62. A. Fabijanska, and D. Sankowski, “Edge detection with sub-pixel accuracy in images of molten metals,” in the Proc. of IEEE International Conference on Imaging Systems and Techniques, Thessaloniki, Greece, pp. 186-191, (2010).
63. 台中精機,立式綜合加工機Vcenter 55/70,www.or.com.tw
64. 慶鴻機電工業股份有限公司,CNC線切割放電加工機保養手冊,B1 edition,2008。
65. Sodick,NC放電加工機AP1L premium,使用說明書,2008。
66. “Motors & Spindles BM-320,” NAKANISHI, pp. 2-13, 2011.
67. “iSpeed3 operation manual,” NAKANISHI, pp. 6, 2011.
68. CCD, The Imaging Source, www.theimagingsource.com/zh_TW/
69. Lens, SCHOTT MORITEX Corporation, www.schott-moritex.com/english/
70. Altera DE0(FPGA), terasIC, http://www.terasic.com.tw/
71. 混合訊號示波器,Tektronix,http://www.tek.com
72. 工具顯微鏡,漢磊股份有限公司,http://www.aixon.com.tw/
73. 掃描式電子顯微鏡,JEOL- Scanning Elextron Microscope JSM-6360, http://www.jeolusa.com/Default.aspx?tabid=174
74. 3D測量雷射共焦顯微鏡,OLYMPUS,http://www.olympus-ims.com/ en/metrology/ols4000/
75. Jobin Yvon T64000拉曼檢測儀,HORIBA Scientific, http://www.horiba.com
76. 加速規PCB352 series,PCB Piezotronic Inc., https://www.pcb.com/products.aspx?m=352A24
77. NI 9234 DAQ擷取卡,National Instruments,Taiwan.ni.com
78. 宋健民,鑽石合成,全華科技圖書股份有限公司,2000。
79. Boron-doped PCD tool, 江信有限公司, www.fact.com.tw
80. Synthetic diamond, www.matweb.com
81. “Diamond Tools: How to Choose Diamond Concentration,” http://www.diamondbladeselect.com/tips/diamond-tools-how-to-choose-diamond-concentration/
82. 黃銅線電極(ψ100 μm),Hitachi Ltd.,www.hitachi-metals.co.jp/e/products
83. J.F. Shackelford, and W. Alexander, “Materials science and Engineering handbook,” pp. 472-533, 2001.
84. 研磨冷卻液,捷斯奧股份有限公司,www.wec.com.tw
85. 江宗翰,“智能化精微工具機開發與光學玻璃微結構加工研究”,國立臺灣師範大學,碩士論文,2012。
86. 楊凱傑,“高頻振動輔助之智能化臥式精微工具機開發與Zerodur®陶瓷玻璃奈米研銑加工研究”,國立臺灣師範大學,碩士論文,2014。
87. NSK, Precision Machinery & Parts, NSK Ltds., pp. 10
88. Aerotech, NANO motion technology-ANT130-XY Series, pp. 2-3, http://www.aerotech.com/
89. Spheroidal graphite cast iron, SS alloy, Al 6061, www.matweb.com
90. K. Cheng, “Machining Dynamics: Fundamentals, Applications and Practices Springer,” pp. 1-16, 2009.
91. Y. Chen, L.C. Zhang, and J.A. Arsecularatne, “Polishing of polycrystalline diamond by the technique of dynamic friction. Part 2: Material removal mechanism,” International Journal of Machine Tools and Manufacture, vol.47, pp. 1615-1624, 2007.
92. Naturally graphite TM, http://graphitecrystals.com/stm.html
93. V.P. Astakhov and J.P. Davim, “Tools (geometry and material) and tool wear”, Chapter 2, Machining: Fundamentals and Recent Advances, Springer, London, ISBN: 978-1-84800-212-8, pp. 37-38, 2008.
94. FEPA, http://www.fepa-abrasives.org/
95. F.W. Taylor, “On the art of cutting metals,” Transactions of ASME, vol.28, pp. 31-58, 1907.
96. M. Alberts, K. Kalaitzidou, and S. Melkote, “An investigation of graphite nanoplatelets as lubricant in grinding,” International Journal of Machine Tools & Manufacture, vol. 49, pp. 966-970, 2009.