研究生: |
李軍霖 Chun-Lin Lee |
---|---|
論文名稱: |
動力學分割之富馬酸酰胺酯和硝基苯乙烯衍生物製備多取代吡咯烷酮衍生物 Kinetic Resolution of Fumaric Acid Amide Esters and Nitrostyrene Derivative through Fully Substituted Pyrrolidineone Formation |
指導教授: |
陳焜銘
Chen, Kwun-Min |
口試委員: |
蔡明剛
Tsai, Ming-Kang 楊德芳 Yang,Te-Fang |
口試日期: | 2021/07/23 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 動力學分割反應 |
英文關鍵詞: | Kinetic Resolution |
研究方法: | 行動研究法 、 準實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202100906 |
論文種類: | 學術論文 |
相關次數: | 點閱:159 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本題目為利用掌性催化劑,進行連鎖不對稱有機催化反應,藉由活化能之差異,進行動力學分割反應,分離外銷旋化合物,並獲得高光學純度的分子。在此反應中,以20 mmol%掌性催化劑進行共價催化,進行aza-Michael/Michael加成反應,伴隨外消旋硝基丙烯胺的動力學分割,以鄰位-二甲苯( o-xylene )為溶劑條件,溫度控制於0 oC,進行催化反應,合成五取代吡咯烷酮衍生物之產物,可得到不錯的產率,鏡像超越值可高達93% ee,並且回收掌性硝基丙烯胺分子,光學純度可高達92% ee。
Asymmetric organocatalytic domino reaction by using chiral catalyst in this study. Kinetic resolution might obtain enantioriched targeted product and separated optical unreactive recovery simultaneously through different activation. In this reaction, Carring out aza-Michael/Michael addition reaction by using 20 mmol% chiral catalyst for covalent catalysis with racemic nitro allylic amine of kinetic resolution in the o-xylene at 0 oC,which proceeds organocatalytic reaction to get pentasubstituted pyrrolidineone product with good yields and excellent stereoselectivities( up to 93% ee ), regarding the recovered nitro allylic amines,we can obtain good enantiomeric excess .( up to 92% ee )
1. Alemán, J.; Cabrera, S., J. Am. Chem. Soc., 2013, 42, 774.
2. List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395.
3. Franzen, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjærsgaard, A.; Jørgensen K.A., J. Am. Chem. Soc. 2005, 127, 18296.
4. Hayashi Y., Gotoh H., Hayashi T., Shoji M. Angew. Chem. 2005, 117, 4284.
5. Krause, N., Alexakis, A., Angew. Chem. 2009, 48, 8923.
6. H. Kim, Y. Kim, and S. Kim, J. Org. Chem. 2017, 11, 8179.
7. Raabea, G.; Enders, D., Chem.Commun. 2015, 51, 2266.
8. Vila, C.; Pedro, J., Chem. Asian J. 2016, 11, 1532.
9. Lin, G.; Sun, X., Org. Lett. 2020, 22, 3351.
10. Ni, Q.; Wang, X.; Zeng, D.; Wu, Q., Song, X., Org. Lett. 2021, 23, 2273.
11. Mosse, S.; Alexakis, A., Org. Lett. 2005, 20, 4361.
12. Wang, J.; Li, H.; Duan, W.; Zu, L.; Wang W.,Org. Lett. 2005, 21, 4713.
13. Appayee, C.; Stacey, E.; Moyer, B., Org. Lett. 2010, 15, 3356.
14. Rani, D.; Bhargava, M.; Agarwal, J., Chemistry Select, 2020, 5, 2435.
15. Ramanjaneyulu, B.; Mahesh, S.; Anand, R., Org. Lett. 2015, 17, 3952.
16. Zhao, K.; Zhi, Y.; Wang, A.; Enders, D., J. Am. Chem. Soc. 2016, 6, 657.
17. Martin, M.; Xu, Y.; Crdova, A.; Backvall, J., J. Am. Chem. Soc. 2006, 12, 225.
18. Hoveyda, A.; Marc, L., Angew. Chem. 2007, 46, 8471.
19. Reddy, R.; Lee, P.; Magar, D.; Chen, J.; Chen, K., J. Org. Chem. 2012, 2, 353.
20. Roy, S.; Chen, K., Org. Lett. 2012, 10, 2496.
21. Gurubrahamam, R.; Chen, Y.; Huang, W.; Chan, Y.; Chang, H.; Tsai, M.; Chen, K., Org. Lett. 2016, 18, 3046.
22. Yokosaka, T.; Hamajima, A.; Nemoto, T.; Hamada, Y., Tetrahedron Letters 2012, 53, 1245.