研究生: |
黃仕堯 Huang, Shi-Yao |
---|---|
論文名稱: |
缺陷在二維混合有機無機鹵化物鉛鈣鈦礦中的影響 Influence of defects in Two-Dimensional hybrid organic-inorganic halide lead perovskites |
指導教授: |
劉沂欣
Liu, Yi-Hsin |
口試委員: |
劉沂欣
Liu, Yi-Hsin 李君婷 Li, Chun-Ting 高琨哲 Kao, Kun-Che |
口試日期: | 2024/07/03 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 二維有機-無機鈣鈦礦 、配體輔助再沉澱法 、聚(甲基丙烯酸甲酯) 鈍化 、氧氣 、缺陷 |
英文關鍵詞: | two-dimensional organic-inorganic perovskites, ligand-assisted reprecipitation, PMMA passivation, oxygen, defect |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401707 |
論文種類: | 學術論文 |
相關次數: | 點閱:48 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們成功利用配體輔助再沉澱法 (ligand-assisted reprecipitation method, LARP 在 室 溫條件下 ((< 合成了二維 層狀 有機無機鈣鈦礦奈米片 。透過引入短碳鏈乙二胺陽離子作為橋接配體,控制了合成溫度和反溶劑比例,從而優化奈米片的生長 。使用穿透式電子顯微鏡與高解析粉末 X光繞射鑑定二維形貌與晶體結構 此鈣鈦礦半導體之層間距小於 1 nm (約 0.8 Å 與先前其他實驗室用以二胺合成之樣品更 具有強烈的量子侷限效應。其中透 螢光光譜發現低溫合成之樣品具有 (390 nm) 和 (500 nm) 兩組 螢光推測低溫樣品具有表現出出色的光學性質 ,並展 現出紫外至可見光範圍( 320 nm)的吸收和發射特性,以及約 3.7 eV的高帶隙,源於量子和介電限制 ,及 為提高材料穩定性,我們採用聚甲基丙烯酸甲酯( PMMA)進行了鈍化,包括共沉澱法和後修飾法。不僅提升了奈米片在氮氣和氧氣環境下的光學性能,而 且通過穿透式電子顯微鏡 、 螢光光譜、疏水性 確認了 PMMA鈍化 奈米片 表面缺陷的 形貌。此外,比較了乾燥箱與手套箱 及大氣下備樣與 氮 氣 環境下備樣 以及不同存放時間 氧氣 對樣品晶格的影響。低溫合成之 樣品 出色的光學性質期待應用於 LED應用而高溫合成之樣品。高溫合成之樣品不發光的特性 未來將聚焦於進一步的光電流研究,探索其在光電應用中的潛力。 最後發現共沉澱法具有鈍化晶體內的缺陷能力同時也能鈍化晶體表面的缺陷,而後修飾法鈍化晶體表現的能力更為出色。
In this study, we successfully synthesized two-dimensional layered organic-inorganic perovskite nanosheets at room temperature (<100°C) using the ligand-assisted reprecipitation method (LARP). By introducing short-chain ethylenediamine cations as bridging ligands, we controlled the synthesis temperature and antisolvent ratio to optimize the growth of the nanosheets. The two-dimensional morphology and crystal structure were characterized using transmission electron microscopy and high-resolution powder X-ray diffraction. The perovskite semiconductors demonstrated an interlayer spacing of less than 1 nm (approximately 0.8 Å), exhibiting stronger quantum confinement effects compared to samples synthesized with diamines in other laboratories. Photoluminescence spectroscopy revealed two fluorescence groups at 390 nm and 500 nm in samples synthesized at low temperatures, indicating exceptional optical properties with absorption and emission characteristics ranging from UV to visible light (320 nm) and a high bandgap of about 3.7 eV due to quantum and dielectric confinement. To enhance material stability, we utilized polymethyl methacrylate (PMMA) for passivation using both coprecipitation and post-modification methods. This not only improved the optical performance of the nanosheets in nitrogen and oxygen environments but also confirmed the morphology of PMMA-passivated surface defects through transmission electron microscopy, fluorescence spectroscopy, and hydrophobicity tests. Additionally, we compared the effects of oxygen on the lattice of the samples prepared under atmospheric and nitrogen conditions in a dry box and glove box over different storage durations. The outstanding optical properties of the low-temperature synthesized samples hold promise for LED applications, while the non-luminescent characteristics of the high-temperature synthesized samples will focus on further photoelectric current research to explore their potential in photonic applications. Finally, it was found that the coprecipitation method could passivate both internal and surface defects of the crystals, whereas the post-modification method showed superior ability to passivate the crystal defects.
1. El-Ballouli, A. a. O.; Bakr, O. M.; Mohammed, O. F. Compositional, Processing, and Interfacial Engineering of Nanocrystal- and Quantum-Dot-Based Perovskite Solar Cells. Chem. Mater. 2019, 31 (17), 6387-6411. DOI: 10.1021/acs.chemmater.9b01268.
2. Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. On the Application of the Tolerance Factor to Inorganic and Hybrid Halide Perovskites: A Revised System. Chem. Sci. 2016, 7, 4548–4556.
3. Yang, T.; Li, Y.; Han, S.; Xu, Z.; Liu, Y.; Zhang, X.; Liu, X.; Teng, B.; Luo, J.; Sun, Z. Highly-Anisotropic Dion–Jacobson Hybrid Perovskite by Tailoring Diamine into CsPbBr3 for Polarization-Sensitive Photodetection. Small 2020, 16 (14), 1907020. DOI: https://doi.org/10.1002/smll.201907020.
4. Akkerman, Q. A.; Motti, S. G.; Srimath Kandada, A. R.; Mosconi, E.; D’Innocenzo, V.; Bertoni, G.; Marras, S.; Kamino, B. A.; Miranda, L.; De Angelis, F.; Petrozza, A.; Prato, M.; Manna, L. Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control. J. Am. Chem. Soc. 2016, 138 (3), 1010-1016. DOI: 10.1021/jacs.5b12124.
5. Knop, O.; Wasylishen, R. E.; White, M. A.; Cameron, T. S.; Oort, M. J. M. Van. Alkylammonium Lead Halides. Part 2. CH3NH3PbX3 (X= Cl, Br, I) Perovskites: Cuboctahedral Halide Cages with Isotropic Cation Reorientation. Can. J. Chem. 1990, 68, 412–422.
6. Stoumpos, C. C.; Kanatzidis, M. G. The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors. Acc. Chem. Res. 2015, 48, 2791–2802.
7. Stoumpos, C. C.; Cao, D. H.; Clark, D. J.; Young, J.; Rondinelli, J. M.; Jang, J. I.; Hupp, J. T.; Kanatzidis, M. G. Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chem. Mater. 2016, 28 (8), 2852-2867. DOI: 10.1021/acs.chemmater.6b00847.
8. Li, X.; Hoffman, J.; Ke, W.; Chen, M.; Tsai, H.; Nie, W.; Mohite, A. D.; Kepenekian, M.; Katan, C.; Even, J.; Wasielewski, M. R.; Stoumpos, C. C.; Kanatzidis, M. G. Two-Dimensional Halide Perovskites Incorporating Straight Chain Symmetric Diammonium Ions, (NH3CmH2mNH3)(CH3NH3)n−1PbnI3n+1 (m = 4–9; n = 1–4). J. Am. Chem. Soc. 2018, 140 (38), 12226-12238. DOI: 10.1021/jacs.8b07712.
9. Weidman, M. C.; Seitz, M.; Stranks, S. D.; Tisdale, W. A. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition. ACS Nano 2016, 10 (8), 7830-7839. DOI: 10.1021/acsnano.6b03496.
10. Xiao, B.; Sun, Q.; Wang, S.; Ji, L.; Li, Y.; Xi, S.; Zhang, B.-B.; Wang, J.; Jie, W.; Xu, Y. Two-Dimensional Dion–Jacobson Perovskite (NH3C4H8NH3)CsPb2Br7 with High X-ray Sensitivity and Peak Discrimination of α-Particles. J. Phys. Chem. Lett. 2022, 13 (5), 1187-1193. DOI: 10.1021/acs.jpclett.1c04204.
11. Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.; Milowska, K. Z.; García Cortadella, R.; Nickel, B.; Cardenas-Daw, C.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. Nano Lett. 2015, 15 (10), 6521-6527. DOI: 10.1021/acs.nanolett.5b02985.
12. Dou, L.; Wong, A. B.; Yu, Y.; Lai, M.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T.; Ginsberg, N. S.; Wang, L.-W.; Alivisatos, A. P.; Yang, P. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 2015, 349 (6255), 1518-1521. DOI: doi:10.1126/science.aac7660.
13. Mitzi, D. B.; Wang, S.; Feild, C. A.; Chess, C. A.; Guloy, A. M. Conducting Layered Organic-inorganic Halides Containing 〈110〉-Oriented Perovskite Sheets. Science 1995, 267 (5203), 1473-1476. DOI: doi:10.1126/science.267.5203.1473.
14. Yin, J.; Maity, P.; Xu, L.; El-Zohry, A. M.; Li, H.; Bakr, O. M.; Brédas, J.-L.; Mohammed, O. F. Layer-Dependent Rashba Band Splitting in 2D Hybrid Perovskites. Chem. Mater. 2018, 30 (23), 8538-8545. DOI: 10.1021/acs.chemmater.8b03436.
15. Chen, S.; Dai, X.; Xu, S.; Jiao, H.; Zhao, L.; Huang, J., Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 2021, 373 (6557), 902-907.
16. Kim, M.; Im, J.; Freeman, A. J.; Ihm, J.; Jin, H. Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (19), 6900-6904. DOI: doi:10.1073/pnas.1405780111.
17. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15 (6), 3692-3696. DOI: 10.1021/nl5048779.
18. Pan, A.; He, B.; Fan, X.; Liu, Z.; Urban, J. J.; Alivisatos, A. P.; He, L.; Liu, Y. Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. ACS Nano 2016, 10 (8), 7943-7954. DOI: 10.1021/acsnano.6b03863.
19. Teunis, M. B.; Johnson, M. A.; Muhoberac, B. B.; Seifert, S.; Sardar, R. Programmable Colloidal Approach to Hierarchical Structures of Methylammonium Lead Bromide Perovskite Nanocrystals with Bright Photoluminescent Properties. Chem. Mater. 2017, 29 (8), 3526-3537. DOI: 10.1021/acs.chemmater.6b05393.
20. Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P.; Alivisatos, A. P. Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. J. Am. Chem. Soc. 2015, 137 (51), 16008-16011. DOI: 10.1021/jacs.5b11199.
21. Sun, S.; Yuan, D.; Xu, Y.; Wang, A.; Deng, Z. Ligand-Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature. ACS Nano 2016, 10 (3), 3648-3657. DOI: 10.1021/acsnano.5b08193.
22. Zhang, H.; Yao, J.; Fu, H. Ultrathin Monolayer Mn2+-Alloyed 2D Perovskite Colloidal Quantum Wells. Adv. Optical Mater. 2021, 9 (6), 2001135. DOI: https://doi.org/10.1002/adom.202001135.
23. Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J. Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136 (3), 850-853. DOI: 10.1021/ja4109209.
24. Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S. K.; Bladt, E.; Kshirsagar, A. S.; Wang, Z.; Yin, J.; Wang, Y.; Quan, L. N.; Yan, F.; Gao, M.; Li, X.; Shamsi, J.; Debnath, T.; Cao, M.; Scheel, M. A.; Kumar, S.; Steele, J. A.; Gerhard, M.; Chouhan, L.; Xu, K.; Wu, X.-g.; Li, Y.; Zhang, Y.; Dutta, A.; Han, C.; Vincon, I.; Rogach, A. L.; Nag, A.; Samanta, A.; Korgel, B. A.; Shih, C.-J.; Gamelin, D. R.; Son, D. H.; Zeng, H.; Zhong, H.; Sun, H.; Demir, H. V.; Scheblykin, I. G.; Mora-Seró, I.; Stolarczyk, J. K.; Zhang, J. Z.; Feldmann, J.; Hofkens, J.; Luther, J. M.; Pérez-Prieto, J.; Li, L.; Manna, L.; Bodnarchuk, M. I.; Kovalenko, M. V.; Roeffaers, M. B. J.; Pradhan, N.; Mohammed, O. F.; Bakr, O. M.; Yang, P.; Müller-Buschbaum, P.; Kamat, P. V.; Bao, Q.; Zhang, Q.; Krahne, R.; Galian, R. E.; Stranks, S. D.; Bals, S.; Biju, V.; Tisdale, W. A.; Yan, Y.; Hoye, R. L. Z.; Polavarapu, L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano 2021, 15 (7), 10775-10981. DOI: 10.1021/acsnano.0c08903.
25. Huang, H.; Zhao, F.; Liu, L.; Zhang, F.; Wu, X.-g.; Shi, L.; Zou, B.; Pei, Q.; Zhong, H. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2015, 7 (51), 28128-28133. DOI: 10.1021/acsami.5b10373.
26. Yin, W.-J.; Yang, J.-H.; Kang, J.; Yan, Y.; Wei, S.-H. Halide Perovskite Materials for Solar Cells: A Theoretical Review. J. Mater. Chem. A 2015, 3, 8926–8942.
27. Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A. Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance. Science. 2016, 354, 206–209.
28. Akkerman, Q. A.; Motti, S. G.; Srimath Kandada, A. R.; Mosconi, E.; D’Innocenzo, V.; Bertoni, G.; Marras, S.; Kamino, B. A.; Miranda, L.; De Angelis, F.; Petrozza, A.; Prato, M.; Manna, L. Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control. J. Am. Chem. Soc. 2016, 138 (3), 1010-1016. DOI: 10.1021/jacs.5b12124.
29. Li, G.; Su, Z.; Canil, L.; Hughes, D.; Aldamasy, M. H.; Dagar, J.; Trofimov, S.; Wang, L.; Zuo, W.; Jerónimo-Rendon, J. J.; Byranvand, M. M.; Wang, C.; Zhu, R.; Zhang, Z.; Yang, F.; Nasti, G.; Naydenov, B.; Tsoi, W. C.; Li, Z.; Gao, X.; Wang, Z.; Jia, Y.; Unger, E.; Saliba, M.; Li, M.; Abate, A., Highly efficient p-i-n perovskite solar cells that endure temperature variations. Science 2023, 379 (6630), 399-403.
30. Yin, J.; Li, H.; Cortecchia, D.; Soci, C.; Brédas, J.-L. Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites. ACS Energy Lett. 2017, 2, 417–423.
31. Emin, D. Optical Properties of Large and Small Polarons and Bipolarons. Phys. Rev. B 1993, 48, 13691–13702.
32. Kondo, S.; Amaya, K.; Saito, T.
33. Journal of Physics: Condensed Matter (2002), 14 (8), 2093-2099
34. Song, K. S.; Williams, R. T. Self-Trapped Excitons; Springer Science & Business Media, 2013, 105.
35. Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10 (12), 936-941. DOI: 10.1038/nmat3145.
36. Fang, Z.; Shang, M.; Zheng, Y.; Zhang, T.; Du, Z.; Wang, G.; Duan, X.; Chou, K.-C.; Lin, C.-H.; Yang, W.; Hou, X.; Wu, T. Organic intercalation engineering of quasi-2D Dion–Jacobson α-CsPbI3 perovskites. Mater. Horiz. 2020, 7 (4), 1042-1050, 10.1039/C9MH01788G. DOI: 10.1039/C9MH01788G.
37. Xu, Z.; Chen, M.; Liu, S. F. First-Principles Study of Enhanced Out-of-Plane Transport Properties and Stability in Dion–Jacobson Two-Dimensional Perovskite Semiconductors for High-Performance Solar Cell Applications. J. Phys. Chem. Lett. 2019, 10 (13), 3670-3675. DOI: 10.1021/acs.jpclett.9b01360.
38. Li, S.; Luo, J.; Liu, J.; Tang, J. Self-Trapped Excitons in All-Inorganic Halide Perovskites: Fundamentals, Status, and Potential Applications. J. Phys. Chem. Lett. 2019, 10 (8), 1999-2007. DOI: 10.1021/acs.jpclett.8b03604.
39. Cortecchia, D.; Yin, J.; Bruno, A.; Lo, S.-Z. A.; Gurzadyan, G. G.; Mhaisalkar, S.; Brédas, J.-L.; Soci, C. Polaron Self-Localization in White-Light Emitting Hybrid Perovskites. J. Mater. Chem. C 2017, 5, 2771–2780.
40. Cortecchia, D.; Neutzner, S.; Srimath Kandada, A. R.; Mosconi, E.; Meggiolaro, D.; De Angelis, F.; Soci, C.; Petrozza, A. Broadband Emission in Two-Dimensional Hybrid Perovskites: The Role of Structural Deformation. J. Am. Chem. Soc. 2017, 139, 39–42.
41. Booker, E. P.; Thomas, T. H.; Quarti, C.; Stanton, M. R.; Dashwood, C. D.; Gillett, A. J.; Richter, J. M.; Pearson, A. J.; Davis, N. J. L. K.; Sirringhaus, H. Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites. J. Am. Chem. Soc. 2017, 139, 18632–18639.
甲、 (41) ACS Applied Materials & Interfaces 2022 Vol. 14 Issue 30 Pages 34161-34170, DOI: 10.1021/acsami.1c08539, https://doi.org/10.1021/acsami.1c08539
42. Solomon, E. I. Electronic Absorption Spectroscopy- Vibronic Coupling and Band Shape Analysis. Comments Inorg. Chem 1984, 3, 300–318.
43. Im, J.-H.; Chung, J.; Kim, S.-J.; Park, N.-G. Synthesis, Structure, and Photovoltaic Property of a Nanocrystalline 2H Perovskite-Type Novel Sensitizer (CH3CH2NH3) PbI3. Nanoscale Res. Lett. 2012, 7, 353.
44. Hu, T.; Smith, M. D.; Dohner, E. R.; Sher, M.-J.; Wu, X.; Trinh, M. T.; Fisher, A.; Corbett, J.; Zhu, X.-Y.; Karunadasa, H. I. Mechanism for Broadband White-Light Emission from Two-Dimensional (110) Hybrid Perovskites. J. Phys. Chem. Lett. 2016, 7, 2258–2263.
45. Dohner, E. R.; Hoke, E. T.; Karunadasa, H. I. Self-Assembly of Broadband White-Light Emitters. J. Am. Chem. Soc. 2014, 136 (5), 1718-1721. DOI: 10.1021/ja411045r.
46. Y. Wang, D. J. Yu, Z. Wang, X. M. Li, X. X. Chen, V. Nalla, H. B. Zeng, H. D. Sun, Small 2017, 13, 1701587. https://doi.org/10.1002/smll.201701587
47. C.-Y. Huang, S.-H. Huang, C.-L. Wu, Z.-H. Wang and C.-C. Yang, ACS Applied Nano Materials 2020 Vol. 3 Issue 12 Pages 11760-11768, DOI: 10.1021/acsanm.0c02274, https://doi.org/10.1021/acsanm.0c02274
48. Chen, L.-C.; Tien, C.-H.; Tseng, Z.-L.; Dong, Y.-S.; Yang, S. Influence of PMMA on All-Inorganic Halide Perovskite CsPbBr3 Quantum Dots Combined with Polymer Matrix. Materials 2019, 12, 985. https://doi.org/10.3390/ma12060985
49. Li, H.; Zhou, J.; Tan, L.; Li, M.; Jiang, C.; Wang, S.; Zhao, X.; Liu, Y.; Zhang, Y.; Ye, Y.; Tress, W.; Yi, C., Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Science Advances 2022, 8 (28), eabo7422.
50. Li, C.; Hsu, S.-C.; Lin, J.-X.; Chen, J.-Y.; Chuang, K.-C.; Chang, Y.-P.; Hsu, H.-S.; Chen, C.-H.; Lin, T.-S.; Liu, Y.-H. Giant Zeeman Splitting for Monolayer Nanosheets at Room Temperature. J. Am. Chem. Soc. 2020, 142 (49), 20616-20623. DOI: 10.1021/jacs.0c05368.
51. Guo, Z.; Wu, X.; Zhu, T.; Zhu, X.; Huang, L. Electron–Phonon Scattering in Atomically Thin 2D Perovskites. ACS Nano 2016, 10 (11), 9992-9998. DOI: 10.1021/acsnano.6b04265.
52. Zhang, Q.; Sun, X.; Zheng, W.; Wan, Q.; Liu, M.; Liao, X.; Hagio, T.; Ichino, R.; Kong, L.; Wang, H.; Li, L., Band Gap Engineering toward Wavelength Tunable CsPbBr3 Nanocrystals for Achieving Rec. 2020 Displays. Chemistry of Materials 2021, 33 (10), 3575-3584.
53. Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L., Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions. Journal of the American Chemical Society 2015, 137 (32), 10276-10281.
54. Worku, M.; Tian, Y.; Zhou, C.; Lin, H.; Chaaban, M.; Xu, L.-j.; He, Q.; Beery, D.; Zhou, Y.; Lin, X.; Su, Y.-f.; Xin, Y.; Ma, B. Hollow metal halide perovskite nanocrystals with efficient blue emissions. Sci. Adv. 2020, 6 (17), eaaz5961. DOI: doi:10.1126/sciadv.aaz5961.
55. Haris, M. P. U.; Bakthavatsalam, R.; Shaikh, S.; Kore, B. P.; Moghe, D.; Gonnade, R. G.; Sarma, D. D.; Kabra, D.; Kundu, J. Synthetic Control on Structure/Dimensionality and Photophysical Properties of Low Dimensional Organic Lead Bromide Perovskite. Inorg. Chem. 2018, 57 (21), 13443-13452. DOI: 10.1021/acs.inorgchem.8b02042.
56. Spanopoulos, I.; Ke, W.; Stoumpos, C. C.; Schueller, E. C.; Kontsevoi, O. Y.; Seshadri, R.; Kanatzidis, M. G. Unraveling the Chemical Nature of the 3D “Hollow” Hybrid Halide Perovskites. J. Am. Chem. Soc. 2018, 140 (17), 5728-5742. DOI: 10.1021/jacs.8b01034.
57. Yettapu, G. R.; Talukdar, D.; Sarkar, S.; Swarnkar, A.; Nag, A.; Ghosh, P.; Mandal, P., Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths. Nano Lett. 2016, 16 (8), 4838-4848.
58. Sharma, S. K.; Misra, A. K.; Sharma, B. Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment. Spectrochim. Acta, Part A 2005, 61 (10), 2404-2412. DOI: https://doi.org/10.1016/j.saa.2005.02.020.
59. Liu, X.; Luo, Z.; Yin, W.; Litvin, A. P.; Baranov, A. V.; Zhang, J.; Liu, W.; Zhang, X.; Zheng, W. Methanol-induced fast CsBr release results in phase-pure CsPbBr3 perovskite nanoplatelets. Nanoscale Adv. 2020, 2 (5), 1973-1979, 10.1039/D0NA00123F. DOI: 10.1039/D0NA00123F.
60. Zhang, X.; Bai, X.; Wu, H.; Zhang, X.; Sun, C.; Zhang, Y.; Zhang, W.; Zheng, W.; Yu, W. W.; Rogach, A. L. Water-Assisted Size and Shape Control of CsPbBr3 Perovskite Nanocrystals. Angew. Chem. Int. Ed. 2018, 57 (13), 3337-3342. DOI: https://doi.org/10.1002/anie.201710869.
61. Zeng YT, Li ZR, Chang SP, Ansay A, Wang ZH, Huang CY. Bright CsPbBr3 Perovskite Nanocrystals with Improved Stability by In-Situ Zn-Doping. Nanomaterials (Basel). 2022 Feb 24;12(5):759. doi: 10.3390/nano12050759.
62. Dmitry Baranov, Gianvito Caputo, Luca Goldoni, Zhiya Dang, Riccardo Scarfiello, Luca De Trizio, Alberto Portone, Filippo Fabbri, Andrea Camposeo, Dario Pisignano and Liberato Manna Chemical Science issue15, 2020. https://doi.org/10.1039/D0SC00738B
63. Lin, C.-C.; Liu, T.-R.; Lin, S.-R.; Boopathi, K. M.; Chiang, C.-H.; Tzeng, W.-Y.; Chien, W.-H. C.; Hsu, H.-S.; Luo, C.-W.; Tsai, H.-Y.; Chen, H.-A.; Kuo, P.-C.; Shiue, J.; Chiou, J.-W.; Pong, W.-F.; Chen, C.-C.; Chen, C.-W., Spin-Polarized Photocatalytic CO2 Reduction of Mn-Doped Perovskite Nanoplates. Journal of the American Chemical Society 2022, 144 (34), 15718-15726.
64. Hsu, H.-C.; Shown, I.; Wei, H.-Y.; Chang, Y.-C.; Du, H.-Y.; Lin, Y.-G.; Tseng, C.-A.; Wang, C.-H.; Chen, L.-C.; Lin, Y.-C.; Chen, K.-H., Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 2013, 5 (1), 262-268.
65. Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y., A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. Journal of the American Chemical Society 2017, 139 (16), 5660-5663.
66. Wang, C.; Dai, G.; Wang, J.; Cui, M.; Yang, Y.; Yang, S.; Qin, C.; Chang, S.; Wu, K.; Liu, Y.; Zhong, H., Low-Threshold Blue Quasi-2D Perovskite Laser through Domain Distribution Control. Nano Lett. 2022, 22 (3), 1338-1344.
67. Lin, H.-C.; Lee, Y.-C.; Lin, C.-C.; Ho, Y.-L.; Xing, D.; Chen, M.-H.; Lin, B.-W.; Chen, L.-Y.; Chen, C.-W.; Delaunay, J.-J., Integration of on-chip perovskite nanocrystal laser and long-range surface plasmon polariton waveguide with etching-free process. Nanoscale 2022, 14 (28), 10075-10081.
68. Toyozawa, Y. Self-localization of elementary excitations. Appl. Opt. 1980, 19 (23), 4101-4103. DOI: 10.1364/AO.19.004101.
69. 賴信甫. 探討配體對有機-無機二維鈣鈦礦發光之影響. 國立臺灣師範大學, 台北市, 2022.
70. Q. Lou, H. Guo, J. Chen, Y. Guo, X. Zhu, T. Chen, et al. ACS Applied Materials & Interfaces 2023 Vol. 15 Issue 33 Pages 39374-39383, DOI: 10.1021/acsami.3c07893, https://doi.org/10.1021/acsami.3c07893
71. Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q. A polymer scaffold for self-healing perovskite solar cells. Nat Commun. 2016 Jan 6;7:10228. doi: 10.1038/ncomms10228.
72. C. Li, S.-C. Hsu, J.-X. Lin, J.-Y. Chen, K.-C. Chuang, Y.-P. Chang, et al. Journal of the American Chemical Society 2020 Vol. 142 Issue 49 Pages 20616-20623, DOI: 10.1021/jacs.0c05368, https://doi.org/10.1021/jacs.0c05368
73. Liu, M.; Zhao, J.; Luo, Z.; Sun, Z.; Pan, N.; Ding, H.; Wang, X., Unveiling Solvent-Related Effect on Phase Transformations in CsBr–PbBr2 System: Coordination and Ratio of Precursors. Chemistry of Materials 2018, 30 (17), 5846-5852.
74. Nakyung Kim, Mingue Shin, Seongmoon Jun, Bongjun Choi, Joonyun Kim, Jinu Park, Hyunseung Kim, Woochul Jung, Jung-Yong Lee, Yong-Hoon Cho, Byungha Shin. Highly Efficient Vacuum-Evaporated CsPbBr3 Perovskite Light-Emitting Diodes with an Electrical Conductivity Enhanced Polymer-Assisted Passivation Layer. ACS Applied Materials & Interfaces 2021, 13 (31) , 37323-37330. https://doi.org/10.1021/acsami.1c05447
75. T. Supasai, N. Rujisamphan, K. Ullrich, A. Chemseddine, Th. Dittrich; Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers. Appl. Phys. Lett. 28 October 2013; 103 (18): 183906. https://doi.org/10.1063/1.4826116
76. Akkerman, Quinten A.; Park, Sungwook; Radicchi, Eros; Nunzi, Francesca; Mosconi, Edoardo; De Angelis, Filippo; Brescia, Rosaria; Rastogi, Prachi; Prato, Mirko; Manna, Liberato. Nano Letters (2017), 17 (3), 1924-1930
77. Chen, Xiao; Chen, Daqin; Li, Junni; Fang, Gaoliang; Sheng, Hongchao; Zhong, Jiasong, Dalton Transactions (2018), 47 (16), 5670-5678
78. Seth, Sudipta; Samanta, Anunay, Journal of Physical Chemistry Letters (2017), 8 (18), 4461-4467
79. R. E. Brandt , V. Stevanović , D. S. Ginley and T. Buonassisi , MRS Commun., 2015, 5 , 265 —275
80. Carmelita Rodà, Ahmed L. Abdelhady, Javad Shamsi, Monica Lorenzon, Valerio Pinchetti, Marina Gandini, Francesco Meinardi, Liberato Manna and Sergio Brovelli , Nanoscale, 2019,11, 7613-7623
81. H.-H. Fang , S. Adjokatse , H. Wei , J. Yang , G. R. Blake , J. Huang , J. Even and M. A. Loi , Sci. Adv., 2016, 2 , e1600534
82. S. G. Motti , M. Gandini , A. J. Barker , J. M. Ball , A. R. Srimath Kandada and A. Petrozza , ACS Energy Lett., 2016, 1 , 726 —730
83. M. Lorenzon , L. Sortino , Q. Akkerman , S. Accornero , J. Pedrini , M. Prato , V. Pinchetti , F. Meinardi , L. Manna and S. Brovelli , Nano Lett., 2017, 17 , 3844 —3853
84. Q. A. Akkerman, A. L. Abdelhady and L. Manna, The Journal of Physical Chemistry Letters 2018 Vol. 9 Issue 9 Pages 2326-2337, DOI: 10.1021/acs.jpclett.8b00572, https://doi.org/10.1021/acs.jpclett.8b00572
85. F. Palazon, C. Urso, L. De Trizio, Q. Akkerman, S. Marras, F. Locardi, et al. ACS Energy Letters 2017 Vol. 2 Issue 10 Pages 2445-2448, DOI: 10.1021/acsenergylett.7b00842, https://doi.org/10.1021/acsenergylett.7b00842
86. Qi Zhang, Xiaonan Deng, Chengyu Tan, Yangying Zhou, Xing Chen, Xuming Bai, Jianbao Li, Bin Tang, Shuangshou Li, Hong Lin; Gamma-phase CsPbBr3 perovskite nanocrystals/polymethyl methacrylate electrospun nanofibrous membranes with superior photo-catalytic property. J. Chem. Phys. 14 July 2020; 153 (2): 024703. https://doi.org/10.1063/5.0012938
87. Yabin Ma, Jinghao Ge, Alex K.-Y. Jen, Jiaxue You, Shengzhong (Frank) Liu https://doi.org/10.1002/adom.202301623
88. Z. Bao, Y.-J. Tseng, W. You, W. Zheng, X. Chen, S. Mahlik, et al. The Journal of Physical Chemistry Letters 2020 Vol. 11 Issue 18 Pages 7637-7642DOI: 10.1021/acs.jpclett.0c02321, https://doi.org/10.1021/acs.jpclett.0c02321
89. Guo, Z., Liu, J., Li, Y. et al. Effects of dispersion techniques on the emulsion polymerization of methyl methacrylate. Colloid Polym Sci 299, 1147–1159 (2021). https://doi.org/10.1007/s00396-021-04835-4
90. T.-E. Hsieh, T.-W. Yang, C.-Y. Hsieh, S.-J. Huang, Y.-Q. Yeh, C.-H. Chen, et al. Chemistry of Materials 2018 Vol. 30 Issue 15 Pages 5468-5477 DOI:10.1021/acs.chemmater.8b02468 https://doi.org/10.1021/acs.chemmater.8b02468