簡易檢索 / 詳目顯示

研究生: 葉元勳
論文名稱: 應用田口方法與灰關聯分析於AISI316不銹鋼薄板氣體鎢極電弧銲接之研究
A Study on the Application of the Taguchi Method and the Grey Relational Analysis in the Gas Tungsten Arc Welding of AISI316 Stainless Steel
指導教授: 許良明
Xu, Liang-Ming
周長彬
Zhou, Chang-Bin
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 142
中文關鍵詞: 銲接氣體鎢極電弧銲接沃斯田鐵不銹鋼田口方法灰關聯分析多重品質特性
英文關鍵詞: welding, gas tungsten arc welding, austenite stainless steel, taguchi method, grey relational analysis, multiple quality characteristics
論文種類: 學術論文
相關次數: 點閱:304下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的主要在於運用田口方法結合灰關聯分析,以銲道微硬度、銲道寬度及銲蝕為品質特性,探討在實驗範圍內之最適化銲接參數。在實驗上,銲接方法採用氣體鎢極電弧銲,實驗材料選用厚度為3.3mm之AISI 316不銹鋼薄板,銲接方式為自動走銲機填料對接薄板。實驗配置上,選用田口L18直交表,以電弧長度、銲接電流、銲接速度、送線速度、對接間隙及保護氣體含氮量百分比等六項銲接參數作為控制因素。
      實驗結果顯示:單一品質特性中,在銲道微硬度方面,最適化銲接參數之硬度平均值為Hv194.2,現行銲接參數之硬度平均值為Hv178.8,提升約9%。在銲道寬度方面,最適化銲接參數之銲道寬度平均值為7.88mm,現行銲接參數之銲道寬度平均值為10.15mm,銲道寬度減少了2.27mm。在銲蝕方面,最適化銲接參數之銲道無銲蝕發生,現行銲接參數之銲道銲蝕嚴重。在多重品質特性最適銲接參數方面,銲道微硬度平均值為Hv178.5,銲道寬度平均值為8.23mm,銲道沒有銲蝕發生。此外,各單一品質特性及多重品質特性之最適化銲接參數的再現性均小於30%,再現性良好。
      另外實驗結果顯示:保護氣體為純氬氣時,銲道微觀組織為FA型態。保護氣體內含1%氮氣時,銲道微觀組織為仍以FA型態為主,但肥粒相組織呈現斷續的狀態。保護氣體內含2%氮氣時,銲道微觀組織為AF與FA型態的混合。
      在後續之研究建議上,可應用田口方法之「動態參數設計」去開發一條設計曲線,只要改變信號因素,即可達到銲接製程最適化的工作,是值得努力去探討的課題。

    The purpose of this study was to obtain the optimal welding process parameters in experimental range by the taguchi method with the grey relational analysis. The correlated results and discussions were focused on multiple quality characteristics as weld microhardness, weld width, and weld undercut.
      In experiments, the gas tungsten arc welding was used. The base metal were the sheets of type 316 stainless steel . The welding method was butt welding with filler by a servo mechanism. In the experimental design, a L18 orthogonal array was used to reduce the number of welding experiments and the selection of process parameters inclueded the arc length, welding current, welding speed, root openings, filler speed and nitrogen content in shelding gas.
      In the single quality characteristic, the experimental result showed that the average of weld microhardness was Hv194.2 for the optimal process parameter and Hv178.8 for the initial process parameter. The hardness was arised about 9%. The average of weld width was 7.88mm for the optimal process parameter and 10.15mm for the initial process parameter. The width was decreased in 2.27mm. The weld of the optimal process parameter indicated no undercut. The weld of the initial process parameter indicated serious undercut.
      In the optimal process parameter of multiple quality characteristics, the experimental result showed that the average of weld microhardness was Hv178.5, the average of weld width was 8.23mm and the weld was no undercut. All of the optimal process parameters had good reproducibilities which were less than 30%.
      When the shilding gas was pure argon, the microstructure of weld showed ferritic-austenitic morphology. When the nitrogen content in the shelding gas was 1%, the microstructure of weld showed ferritic-austenitic morphology but the ferrites were semicontinous. When the nitrogen content in the shelding gas was 2%, the microstructure of weld showed the mixture of ferritic-austenitic morph-
    ology and austenitic-ferritic morphology.
      In the further, there is an following advice of reserch : It is possible to design a curve by applying dynamic characteristics in the taguchi method. To do this, we can reach the goal of optimal process welding parameter just change signal factros. It is worth to make efforts on this probem.

    目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅸ 第一章 前言 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 研究範圍與限制 3 第四節 名詞解釋 4 第二章 文獻探討 5 第一節 沃斯田鐵型不銹鋼 5 第二節 沃斯田鐵型不銹鋼銲接冶金 7 第三節 氣體鎢極電弧銲接 21 第四節 田口方法 31 第五節 灰關聯分析 45 第三章 實驗方法與步驟 50 第一節 實驗流程 50 第二節 實驗材料 52 第三節 實驗配置 53 第四節 銲接實施與試片裁取 57 第五節 品質特性值之量測 63 第六節 肥粒相量測與金相顯微組織觀察 66 第七節 量測數據之解析 68 第四章 實驗結果與討論 70 第一節 銲道微硬度最適銲接參數解析 70 第二節 銲道寬度最適銲接參數解析 82 第三節 銲蝕最適銲接參數解析 91 第四節 多重品質特性最適銲接參數解析 101 第五節 銲道金相微觀組織與肥粒相指數之關係 122 第五章 結論與建議 133 第一節 結論 133 第二節 建議 135 參考資料 136 附錄1 田口變異數分析計算公式 141 附錄2 熵測度計算公式 142 表目錄 表2-1 應用較廣之沃斯田鐵型不銹鋼化學成分表 7 表2-2 氮氣添加比例對304不銹鋼銲道截面形狀之影響 18 表2-3 GTAW電流型式與特性 25 表2-4 鎢電極棒各種棒徑所對應的適當電流值 27 表2-5 鎢電極棒的分類 28 表2-6 常用的直交表 41 表3-1 本研究使用之母材AISI316不銹鋼薄板之化學成分表 52 表3-2 ER316銲線之化學成分表 52 表3-3 控制因素及其水準值 53 表3-4 銲道微硬度實驗配置 54 表3-5 銲道寬度實驗配置 55 表3-6 銲蝕情形實驗配置 56 表4-1 銲道微硬度原始數據(一) 71 表4-2 銲道微硬度原始數據(二) 72 表4-3 銲道微硬度評估點數 72 表4-4 各次實驗組別銲道微硬度評估點數(一) 73 表4-5 各次實驗組別銲道微硬度評估點數(二) 74 表4-6 銲道微硬度之SN比 75 表4-7 銲道微硬度SN比補助表 76 表4-8 銲道微硬度變異數分析表 78 表4-9 最適銲接參數之銲道微硬度值 79 表4-10 現行銲接參數銲道微硬度值 80 表4-11 銲道寬度原始數據(一) 83 表4-12 銲道寬度原始數據(二) 84 表4-13 銲道寬度之SN比 85 表4-14 銲道寬度SN比補助表 86 表4-15 銲道寬度變異數分析表 88 表4-16 最適銲接參數之銲道寬度值 89 表4-17 現行銲接參數銲道寬度值 89 表4-18 銲蝕評估點數(一) 92 表4-19 銲蝕評估點數(二) 93 表4-20 銲蝕之SN比 94 表4-21 銲蝕SN比補助表 95 表4-22 銲蝕變異數分析表 97 表4-23 最適銲接參數之銲蝕評估點數 98 表4-24 現行銲接參數銲蝕評估點數 98 表4-25 各品質特性原始數據平均值 102 表4-26 灰關聯生成 104 表4-27 差序列 105 表4-28 灰關聯係數 107 表4-29 各品質特性之灰關聯係數權重 107 表4-30 灰關聯度及灰關聯序 108 表4-31 各控制因素在不同水準下,各品質特性數據平均值 110 表4-32 直交表外最適銲接參數灰關聯分析表 111 表4-33 直交表外最適銲接參數之銲道微硬度值 115 表4-34 直交表外最適銲接參數銲道寬度值 116 表4-35 直交表外最適銲接參數之銲蝕評估點數 117 表4-36 直交表內最適銲接參數SN比的改善與再現性 118 表4-37 直交表外最適銲接參數SN比的改善與再現性 118 表4-38 銲道肥粒相指數(銲件一) 122 表4-39 銲道肥粒相指數(銲件二) 123 表4-40 銲件一及銲件二肥粒相指數平均值 124 表4-41 肥粒相指數變異數分析表 125 圖目錄 圖2-1 Fe-Cr-Ni三元相圖 8 圖2-2 Fe-Cr-Ni的擬二元相圖 9 圖2-3 Schaeffler diagram 10 圖2-4 Delong diagram 10 圖2-5 沃斯田鐵不銹鋼凝固型態 12 圖2-6 沃斯田鐵不銹鋼凝固型態 13 圖2-7 主沃斯田相凝固之微觀組織 14 圖2-8 沃斯田鐵不銹鋼銲接金屬凝固之微觀組織 15 圖2-9 多重銲接下,308不銹鋼銲接金屬之肥粒相凝固型態 16 圖2-10 310不銹鋼銲接金屬之肥粒相凝固型態 17 圖2-11 沃斯田鐵不銹鋼凝固模式 17 圖2-12 保護氣體加氮電弧銲接對銲道肥粒相含量之影響 19 圖2-13 氮氣添加量對銲道硬度的影響 20 圖2-14 GTAW的作用原理 21 圖2-15 GTAW的設備 23 圖2-16 定電流電源機的特性曲線 23 圖2-17 GTAW銲炬之構造 27 圖2-18 田口品質工程的主要內容 32 圖2-19 品質損失函數之變化型態 35 圖2-20 參數設計之目的 36 圖2-21 參數設計之策略 38 圖3-1 實驗流程圖 51 圖3-2 GTAW電源機 57 圖3-3 自動送線機 58 圖3-4 自動走銲機 58 圖3-5 銲接平台 59 圖3-6 保護氣體設備 59 圖3-7 銲接完成之銲件 61 圖3-8 試片裁取示意圖 62 圖3-9 試片之冷鑲埋 63 圖3-10 CCD Camera低倍率光學顯微鏡 64 圖3-11 Vickers微硬度試驗機 65 圖3-12 量測微硬度示意圖 65 圖3-13 肥粒相含量測定儀 66 圖3-14 肥粒相指數量測示意圖 67 圖3-15 光學顯微鏡及相關設備 67 圖4-1 銲道微硬度控制因素效果圖 77 圖4-2 最適銲接參數與現行銲接參數微硬度比較 81 圖4-3 銲道寬度控制因素效果圖 87 圖4-4 最適銲接參數與現行銲接參數之銲道巨觀圖 90 圖4-5 銲蝕控制因素效果圖 96 圖4-6 最適銲接參數之銲道巨觀圖 99 圖4-7 現行銲接參數之銲道巨觀圖 100 圖4-8 最適銲接參數與現行銲接參數之銲道巨觀圖 119 圖4-9 多重品質特性最適銲接參數之銲道巨觀圖 120 圖4-10 現行銲接參數之銲道巨觀圖 121 圖4-11 No.1銲道金相圖 127 圖4-12 No.13銲道金相圖 128 圖4-13 No.4銲道金相圖 129 圖4-14 No.9銲道金相圖 130 圖4-15 No.5銲道金相圖 131 圖4-16 No.16銲道金相圖 132

    一、中文部分
    中國生產力中心(民79)。開發設計階段的品質工程。台北:中國生產力中心。
    中國生產力中心(民82)。田口式品質工程技術手冊。台北:經濟部工業局。
    中國生產力中心(民86)。靜態參數設計。台北:經濟部工業局。
    中國生產力中心(民86)。動態參數設計。台北:經濟部工業局。
    中國生產力中心(民86)。允差設計。台北:經濟部工業局。
    江金山等(民87)。灰色理論入門。台北:高立圖書。
    吳漢雄、鄧聚龍、溫坤禮(民85)。灰色分析入門。台北:高立圖書。
    李輝煌(民92)。田口方法-品質設計的原理與實務。台北:高立圖書。
    林玄良(民87)。田口方法於A390鋁合金最佳化製程之應用。國立台灣師範大學工業教育研究所碩士論文。
    林忠傑(民89)。冷加工及銲後熱處理對1050鋁合金銲件機械性質影響之研究。國立台灣師範大學工業教育研究所碩士論文。
    周長彬、蔡丕樁、郭央諶(民90)。銲接學,頁30。台北:全華科技圖書。
    金重勳(民88)。機械材料,頁250。台南:復文書局。
    翁慶昌、陳佳欉、賴宏仁(民90)。灰色系統基本方法及其應用。台北:高立圖書。
    黃振賢(民91)。機械材料,頁234-235。台北:新文京。
    陳裔騰(民75)。保護氣體加氮對不銹鋼銲接性的影響。國立交通大學機械工程研究所碩士論文。
    張清亮(民90)。灰色關聯度在綜合評量應用上之改進,2001年灰色系統理論與應用學術研討會論文集,頁D121-D126。雲林:國立雲林科技大學。
    曾光宏、周長彬(民90)。保護氣體加氮電弧銲接對沃斯田鐵不銹鋼銲接性之研究。銲接與切割,第11卷第6期,頁52-56。
    曾光宏(民91)。銲接遮蔽氣體。金屬工業,第36卷第6期,頁110-115。
    開發設計階段的品質工程(民79)。台北:中國生產力中心。
    楊山毅(民78)。銲接參數對沃斯田鐵不銹鋼固化現象與熱裂性之影響。國立交通大學機械工程研究所碩士論文。
    溫坤禮等(民92)。灰關聯模型方法與應用。台北:高立圖書。
    劉國雄等(民89)。工程材料科學,頁475。台北:全華科技圖書。
    黎正中(民82)。穩健設計之品質工程。台北:台北圖書。

    二、英文部分
    American Welding Society (1991). Welding handbook (8th ed)(pp.74~104). Miami, FL
    ASM International Handbook Committee. (1998).Welding, brazing and soliding (10th ed)(pp.190-194). Materials Park:ASM International.
    ASM International Handbook Committee. (1998). Metallography and Micro- structures (10th ed)(p.842). Materials Park:ASM International.。
    ASM International Handbook Committee. (1998). Welding, brazing and soliding (10th ed)(pp.456-469). Materials Park: ASM International.
    Bilmes, P., Gonzalez, A., Llorente, C., and Solari, M. (1996). Effect of δ ferrite solidification morphology of austenitic stainless steel weld metal on properties of welded joints. Welding International, Vol.10, p18.
    Brooks, J. A. (1982). Solidification and solid state transformations of austenitic stainless steel welds. Trends in welding research in the United States
    (pp.331-357). American Society for Metals.
    Brooks, J. A. and Thompson, A. W. (1991). Microstructure development and solidification cracking susceptibility of austenitic stainless steel welds. International Materials Reviews, Vol.36, p.20.
    David, S. A. (1981). Ferritic morphology and variations in ferrite content in austenutic stainless steel welds. Welding journal, Vol.60, pp.63s-71s.
    Delong, W. T. (1974). Ferrite in austenitic stainless steel weld metal. Welding journal, Vol.53, pp.273s-286s.
    Deng Julong. (1989). Introduction to grey system theory. Journal of Grey System, Vol.1, pp.1-24.
    Dieter, G. E. (2001). Mechanical Metallurgy. New York: McGraw-Hill.
    Lippold, J. C. and Savage, W. F. (1974). Welding journal, Vol.58, p362s.
    Lippold, J. C. and Savage, W. F. (1980). Solidification of austenitic stainless steel weldments: part2-The effect of alloy composition on ferrite morphology. Welding journal, Vol.59, pp.48s-58s.
    Lin, Y. C. and Chen, P. Y. (2001). Effect of nitrogen content and retained ferrite on the residual stress in austenitic stainless steel weldments. Materials science and engineering A, Vol.307, pp.165-171.
    Okagawa, R. K. , Dixon, R. D. and Olson, D. L. (1983). The influence of nitro gen from welding on stainless steel weld metal microstructure. Welding journal, Vol.62, pp.204s-208s.
    Ogawa, T. , Suzuki, K. and Zaizen, T. (1984). The weldability of nitrogen containing austenitic stainless steel: part2-porosity, cracking and creep property. Welding journal, Vol.63, pp.213s-223s.
    Schaeffler, A. L. Metal Prog., 56: 680, 1949.
    Kou Sindo. (1987). Welding Metallurgy (pp.180~185). New York: John Wiley & Sons, Inc.
    Suutala, N., Takalo, T., and Moisio, T. (1979). The relationship between solodification and microstructure in austenitic and austenutic-ferritic stainless steel welds. Metall Transactions A, Vol.10A, pp.512-514.
    Suutala, N., Takalo, T., and Moisio, T. (1979). Austenitic solidification mold in austenutic stainless steel welds. Metall Transactions A, Vol.10A, pp.1173- 1181.
    Suutala, N., Takalo, T., and Moisio, T. (1979). Single-phase ferritic solidification mold in austenutic stainless steel welds. Metall Transactions A, Vol.10A, pp.1183-1190.
    Suutala, N., Takalo, T., and Moisio, T. (1980). Ferritic-austenitic solidification mold in austenutic stainless steel welds. Metall Transactions A, Vol.11A, pp.717-725.
    Suutala, N. (1983). Effect of solidification conditions on the solidification mold in austenutic stainless steels. Metall Transactions A, Vol.14A, pp.191-197.

    QR CODE