研究生: |
王思琪 Wang szu chi |
---|---|
論文名稱: |
蛋白激酶A抑制劑虛擬篩選之嵌合計算:可動支鏈之影響 Virtual Screening of PKA Inhibitors Using Docking Computation:Effect of Flexible Side Chain |
指導教授: | 孫英傑 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 蛋白激酶A 、虛擬篩選 、嵌合計算 、支鏈 |
英文關鍵詞: | protein kinase A, virtual screening, docking, side chain |
論文種類: | 學術論文 |
相關次數: | 點閱:153 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
PKA為一種蛋白質激酶,有多種功能包括糖原調節、糖類與脂類的代謝;也與許多疾病諸如肺癌、結直腸癌等有關。在本研究中,我們利用分子嵌合計算來研究PKA的抑制劑。
首先,我們對20個蛋白質資料庫的PKA抑制劑複合物進行分子嵌合計算,研究其再現性。結果發現,計算評分值與實驗IC50值具有良好的相關性。第二,我們選擇5個PKA抑制劑複合物做交叉分子嵌合,研究當PKA來自不同的結晶構型時,如何再現小分子的構型。第三,使用相同5個PKA結晶構型進行虛擬篩選,計算10個具有抑制力小分子可從資料庫下載的1000個化合物中篩選出多少個。在這些模擬計算中,我們分析/討論當我們允許可動蛋白質活性中心附近的數個胺基酸支鏈時,其對結果的影響。我們發現,當設定可動4個胺基酸支鏈時,其結果較佳。最後,我們根據以上較佳的條件選擇及設定,高速虛擬篩選24535個化合物,並討論數個具有較佳親和力化合物與PKA之間的作用及其結合模型,這些計算結果將有助於實驗學家設計與搜尋PKA抑制劑。
Protein kinase A (PKA) is a kinase protein that has several functions in cell, including regulation of glycogen, sugar, and lipid metabolism. It also plays significant role in a number of biochemical reaction networks associated with diseases, including lung cancer and colorectal cancers. In the present study, we used docking computation to aid in design and discovery of PKA inhibitors. First, we carried out docking computations for 20 PKA-inhibitor complexes from protein data bank to examine their reproducibility. The results showed that the computed fitnesses values of ligands are in good accord with the experimental IC50 values. Second, crossing docking of selected 5 complexes was carried out to investigate if and how ligand conformations can be regained when a protein structure from different complexes were used. In addition, thirdly, the protein structures from these 5 complexes were used to undergo a virtual screening to see if 10 active compounds can be screened out of 1000 compounds selected from a database. In these computations, the several side chains at active site were allowed to move to examine how this effect affects the docking results. The results showed that better results were obtained in the case of allowing 4 residues to move. Finally, a virtual screening for 24535 compounds was carried out. The interactions between top-ranked compounds and PKA were analyzed and discussed. These computed results and analysis should be of aid in design and discovery of PKA inhibitors.
1. Congreve, M., Murray, C.W. & Blundell, T.L. Keynote review: Structural biology and drug discovery. Drug Discovery Today 10, 895-907 (2005).
2. Charifson, P.S. Practical Application of Computer-Aided Drug Design (Marcel Dekker, Inc., 1997).
3. Taylor, R.D., Jewsbury, P.J. & Essex, J.W. (2002).
4. Klebe, G. Virtual ligand screening: strategies, perspectives and limitations. Drug Discovery Today 11, 580-594 (2006).
5. Verdonk, M.L. et al. Virtual Screening Using Protein−Ligand Docking: Avoiding Artificial Enrichment. Journal of Chemical Information and Computer Sciences 44, 793-806 (2004).
6. Eccleston, A. & Dhand, R. Signalling in cancer. Nature 441, 423-423 (2006).
7. Zhang, J., Yang, P.L. & Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9, 28-39 (2009).
8. Tan, Y.-H. et al. Cytotoxicity and Proteomics Analyses of OSU03013 in Lung Cancer. Clinical Cancer Research 14, 1823-1830 (2008).
9. E., L. et al. NNK activates ERK1/2 and CREB/ATF-1 <I>via</I> beta-1-AR and EGFR signaling in human lung adenocarcinoma and small airway epithelial cells. International Journal of Cancer 119, 1547-1552 (2006).
10. Stork, P.J.S. & Schmitt, J.M. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends in Cell Biology 12, 258-266 (2002).
11. Gerits, N., Kostenko, S., Shiryaev, A., Johannessen, M. & Moens, U. Relations between the mitogen-activated protein kinase and the cAMP-dependent protein kinase pathways: Comradeship and hostility. Cellular Signalling 20, 1592-1607 (2008).
12. Feliciello, A., Gottesman, M.E. & Avvedimento, E.V. cAMP-PKA signaling to the mitochondria: protein scaffolds, mRNA and phosphatases. Cellular Signalling 17, 279-287 (2005).
13. Montminy, M. TRANSCRIPTIONAL REGULATION BY CYCLIC AMP. Annual Review of Biochemistry 66, 807-822 (1997).
14. Fedorov, O. et al. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proceedings of the National Academy of Sciences 104, 20523-20528 (2007).
15. Kim, C., Xuong, N.-H. & Taylor, S.S. Crystal Structure of a Complex Between the Catalytic and Regulatory (RI{alpha}) Subunits of PKA. Science 307, 690-696 (2005).
16. Kim, C., Vigil, D., Anand, G. & Taylor, S.S. Structure and dynamics of PKA signaling proteins. European Journal of Cell Biology 85, 651-654 (2006).
17. Taylor, S.S. et al. Signaling through cAMP and cAMP-dependent protein kinase: Diverse strategies for drug design. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics 1784, 16-26 (2008).
18. Lichti-Kaiser, K., Xu, C. & Staudinger, J.L. Cyclic AMP-dependent Protein Kinase Signaling Modulates Pregnane x Receptor Activity in a Species-specific Manner. Journal of Biological Chemistry 284, 6639-6649 (2009).
19. Logan, C.Y. & Nusse, R. THE WNT SIGNALING PATHWAY IN DEVELOPMENT AND DISEASE. Annual Review of Cell and Developmental Biology 20, 781-810 (2004).
20. Pickin, K.A., Chaudhury, S., Dancy, B.C.R., Gray, J.J. & Cole, P.A. Analysis of Protein Kinase Autophosphorylation Using Expressed Protein Ligation and Computational Modeling. Journal of the American Chemical Society 130, 5667-5669 (2008).
21. Page, C.S. & Bates, P.A. Can MM-PBSA calculations predict the specificities of protein kinase inhibitors? Journal of Computational Chemistry 27, 1990-2007 (2006).
22. Morris, G.M. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19, 1639-1662 (1998).
23. Makino, S. & Kuntz, I.D. Automated flexible ligand docking method and its application for database search. Journal of Computational Chemistry 18, 1812-1825 (1997).
24. Rarey, M., Kramer, B., Lengauer, T. & Klebe, G. A Fast Flexible Docking Method using an Incremental Construction Algorithm. Journal of Molecular Biology 261, 470-489 (1996).
25. Jones, G., Willett, P., Glen, R.C., Leach, A.R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology 267, 727-748 (1997).
26. Friesner, R.A. et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. Journal of Medicinal Chemistry 47, 1739-1749 (2004).
27. Abagyan, R., Totrov, M. & Kuznetsov, D. ICM? new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. Journal of Computational Chemistry 15, 488-506 (1994).
28. Koska, J.r. et al. Fully Automated Molecular Mechanics Based Induced Fit Protein?igand Docking Method. Journal of Chemical Information and Modeling 48, 1965-1973 (2008).
29. Davis, I.W. & Baker, D. RosettaLigand Docking with Full Ligand and Receptor Flexibility. Journal of Molecular Biology 385, 381-392 (2009).
30. Cavasotto, C.N. & Abagyan, R.A. Protein Flexibility in Ligand Docking and Virtual Screening to Protein Kinases. Journal of Molecular Biology 337, 209-225 (2004).
31. Mishra, N. et al. Structure based virtual screening of GSK-3[beta]: Importance of protein flexibility and induced fit. Bioorganic & Medicinal Chemistry Letters 19, 5582-5585 (2009).
32. http://129.43.27.140/ncidb2/. National Cancer Institute Database.
33. Lovell, S.C., Word, J.M., Richardson, J.S. & Richardson, D.C. The penultimate rotamer library. Proteins-Structure Function and Genetics 40, 389-408 (2000).
34. Schlessinger, A. & Rost, B. Protein flexibility and rigidity predicted from sequence. Proteins-Structure Function and Bioinformatics 61, 115-126 (2005).
35. Cole, J.C., Murray, C.W., Nissink, J.W.M., Taylor, R.D. & Taylor, R. Comparing protein-ligand docking programs is difficult. Proteins-Structure Function and Bioinformatics 60, 325-332 (2005).
36. Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V. & Mee, R.P. Empirical scoring functions .1. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design 11, 425-445 (1997).
37. Baxter, C.A., Murray, C.W., Clark, D.E., Westhead, D.R. & Eldridge, M.D. Flexible docking using Tabu search and an empirical estimate of binding affinity. Proteins-Structure Function and Genetics 33, 367-382 (1998).
38. Mooij, W.T.M. & Verdonk, M.L. General and targeted statistical potentials for protein-ligand interactions. Proteins-Structure Function and Bioinformatics 61, 272-287 (2005).
39. Verdonk, M.L. Modeling water molecules in protein-ligand docking using GOLD. Journal of Medicinal Chemistry 48, 6504 (2005).
40. Jones, G., Willett, P. & Glen, R.C. MOLECULAR RECOGNITION OF RECEPTOR-SITES USING A GENETIC ALGORITHM WITH A DESCRIPTION OF DESOLVATION. Journal of Molecular Biology 245, 43-53 (1995).
41. Verdonk, M.L. et al. Modeling water molecules in protein-ligand docking using GOLD. Journal of Medicinal Chemistry 48, 6504-6515 (2005).
42. Holland, J.H. Adaptation in Natural and Artificial Systems (1975).
43. http://www.iem.bham.ac.uk/environmental/sharifi.htm. genetic algorithm procedures
44. Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 23, 3-25 (1997).