研究生: |
陳泰睿 Chen, Tai-Rui |
---|---|
論文名稱: |
急性同時健身運動對抑制控制之影響:事件關聯電位研究 The Effect of Acute Concurrent Exercise on Inhibition Control: An Event-Related Potential Study |
指導教授: |
張育愷
Chang, Yu-Kai |
口試委員: |
陳豐慈
Chen, Feng-Tzu 洪聰敏 Hong, Tsung-Min 張育愷 Chang, Yu-Kai |
口試日期: | 2022/07/01 |
學位類別: |
碩士 Master |
系所名稱: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 執行功能 、抑制功能 、急性健身運動 、血乳酸 |
英文關鍵詞: | acute exercise, inhibition, executive function, blood lactate |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202200773 |
論文種類: | 學術論文 |
相關次數: | 點閱:133 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
抑制控制係一執行功能成分,為心理健康、學習及工作成就及社會發展的必要能力。統合分析指出,急性健身運動可增進抑制控制,且有氧及阻力健身運動型態皆產生效益。結合兩種運動型態的同時健身運動可以增加生長激素等賀爾蒙反應,且相較於單一型態健身運動,進行同時健身運動對於增進身體適能有更多效益。然尚未有研究探討結合該兩種運動成分之同時健身運動對於抑制控制之效果。本研究結合測量神經電生理指標及生理指標對急性健身運動後效益進行探討,採用事件關聯電位及血乳酸測量,觀察P3振幅及血乳酸的變化,並進一步分析血乳酸是否為急性健身運動與抑制控制變化的中介因子。本研究目的為:一、探討急性同時健身運動對抑制控制之影響。二、探討同時健身運動對於P3振幅之影響。三、探討血乳酸是否為中介因子。本研究招募78位成人,隨機分派至同時健身運動組、有氧健身運動組及閱讀控制組,分別進行同時健身運動、有氧健身運動以及閱讀。並對抑制控制進行前、後測。以單因子共變數分析抑制控制測驗之反應時間、準確率和P3振幅,以四步驟法進行血乳酸中介分析。結果發現同時健身運動組之抑制控制作業表現優於閱讀控制組,且與有氧健身運動組相同。然三組之P3振幅無顯著差異。中介分析則顯示血乳酸非中介因子。總體而言,進行急性同時健身運動對抑制控制有效益,未來可進一步以同時健身運動之順序是否影響其對抑制控制之效益。
Inhibition control is a high-level cognition which plays an important role in academic performance, career, and interpersonal relationship. Previous meta-analysis study has demonstrated that either acute aerobic or resistance exercise could improve inhibition control. However, it is still unclear whether inhibition control can be enhanced by the concurrent exercise that combines aerobic and resistance exercise. The purposes of this study are: (1) Measuring the effect of acute concurrent exercise on executive function. (2) Measuring the effect of acute concurrent exercise on P3 amplitude. (3) Measuring whether the effect of acute concurrent exercise on inhibition is mediated by blood lactate. 78 adults were recruited and randomly assigned to the concurrent exercise group, aerobic exercise group and reading control group. Stroop test reaction time, accuracy and P3 amplitude were analyzed by one-way analysis of covariance (ANCOVA) and blood lactate analyzed to determine whether as mediator or not. The results indicated inhibition control was improved by both, while both demonstrated no effect on P3. Nevertheless, mediation analysis showed that blood lactate was not a mediator. In conclusion, acute concurrent exercise is beneficial to inhibitory control. Future study could investigate that whether the odder effect of concurrent exercise would moderate the effect on inhibition control.
Alves, C. R., Gualano, B., Takao, P. P., Avakian, P., Fernandes, R. M., Morine, D., & Takito, M. Y. (2012). Effects of acute physical exercise on executive functions: a comparison between aerobic and strength exercise. Journal of Sport and Exercise Psychology, 34(4), 539-549. https://doi.org/10.1123/jsep.34.4.539
American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. (2009). Medicine & Science in Sports & Exercise 41(3), 687-708. https://doi.org/10.1249/MSS.0b013e3181915670
AbouAssi, H., Slentz, C. A., Mikus, C. R., Tanner, C. J., Bateman, L. A., Willis, L. H., Shields, A. T., Piner, L. W., Penry, L. E., Kraus, E. A., Huffman, K. M., Bales, C. W., Houmard, J. A., & Kraus, W. E. (2015). The effects of aerobic, resistance, and combination training on insulin sensitivity and secretion in overweight adults from STRRIDE AT/RT: a randomized trial. Journal of Applied Physiology, 118(12), 1474-1482. https://doi.org/10.1152/japplphysiol.00509.2014
Aquino, G., Iuliano, E., di Cagno, A., Vardaro, A., Fiorilli, G., Moffa, S., Di Costanzo, A., De Simone, G., & Calcagno, G. (2016). Effects of combined training vs aerobic training on cognitive functions in COPD: a randomized controlled trial. International Journal of Chronic Obstructive Pulmonary Disease, 11, 711-718. https://doi.org/10.2147/copd.S96663
Arvanitakis, Z., Wilson, R. S., Bienias, J. L., Evans, D. A., & Bennett, D. A. (2004). Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Archives of neurology, 61(5), 661-666. https://doi.org/10.1001/archneur.61.5.661
American College of Sports Medicine. (2010). ACSM’s Guidelines for Exercise Testing and Prescription (8th ed). Author.
American College of Sports Medicine. (2018). ACSM's guidelines for exercise testing and prescription. (11th ed). Author.
Byun, K., Hyodo, K., Suwabe, K., Ochi, G., Sakairi, Y., Kato, M., Dan, I., & Soya, H. (2014). Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study. Neuroimage, 98, 336-345. https://doi.org/10.1016/j.neuroimage.2014.04.067
Bailey, C. E. (2007). Cognitive accuracy and intelligent executive function in the brain and in business. Annals of the New York Academy of Sciences, 1118, 122-141. https://doi.org/10.1196/annals.1412.011
Bangsbo, J., Graham, T., Johansen, L., & Saltin, B. (1994). Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise. Journal of Applied Physiology, 77(4), 1890-1895. https://doi.org/10.1152/jappl.1994.77.4.1890
Basso, J. C., & Suzuki, W. A. (2017). The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A review. Brain Plasticity, 2(2), 127-152. https://doi.org/10.3233/bpl-160040
Bell, G. J., Syrotuik, D., Martin, T. P., Burnham, R., & Quinney, H. A. (2000). Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. European Journal of Applied Physiology, 81(5), 418-427. https://doi.org/10.1007/s004210050063
Brush, C. J., Olson, R. L., Ehmann, P. J., Osovsky, S., & Alderman, B. L. (2016). Dose-response and time course effects of acute resistance exercise on executive function. Journal of Sport and Exercise Psychology, 38(4), 396-408. https://doi.org/10.1123/jsep.2016-0027
Bredin, S. S., Gledhill, N., Jamnik, V. K., & Warburton, D. E. (2013). PAR-Q+ and ePARmed-X+: new risk stratification and physical activity clearance strategy for physicians and patients alike. Canadian Family Physician, 59(3), 273-277.
Baler, R. D., & Volkow, N. D. (2006). Drug addiction: the neurobiology of disrupted self-control. Trends in Molecular Medicine, 12(12), 559-566. https://doi.org/10.1016/j.molmed.2006.10.005
Chittka, L., Skorupski, P., & Raine, N. E. (2009). Speed-accuracy tradeoffs in animal decision making. Trends in Molecular Medicine, 24(7), 400-407. https://doi.org/10.1016/j.tree.2009.02.010
Cadore, E. L., Izquierdo, M., Santos, M. G. d., Martins, J. B., Rodrigues Lhullier, F. L., Pinto, R. S., . . . Kruel, L. F. M. (2012). Hormonal responses to concurrent strength and endurance training with different exercise orders. The Journal of Strength and Conditioning Research, 26(12), 3281-3288. https://doi.org/10.1519/JSC.0b013e318248ab26
Chang, Y. K., Alderman, B. L., Chu, C. H., Wang, C. C., Song, T. F., & Chen, F. T. (2017). Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study. Psychophysiology, 54(2), 289-300. https://doi.org/10.1111/psyp.12784
Chang, Y. K., Erickson, K. I., Stamatakis, E., & Hung, T. M. (2019). How the 2018 US Physical Activity Guidelines are a call to promote and better understand acute physical activity for cognitive function gains. Sports Medicine, 49(11), 1625-1627. https://doi.org/10.1007/s40279-019-01190-x
Chang, Y. K., Etnier, J. L., & Barella, L. A. (2009). Exploring the relationship between exercise-induced arousal and cognition using fractionated response time. Research Quarterly for Exercise and Sport, 80(1), 78-86.
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain Research, 1453, 87-101. https://doi.org/10.1016/j.brainres.2012.02.068
Coco, M., Buscemi, A., Ramaci, T., Tusak, M., Corrado, D. D., Perciavalle, V., . . . Musumeci, G. (2020). Influences of blood lactate levels on cognitive domains and physical health during a sports stress. Brief review. International Journal of Environmental Research and Public Health, 17(23). https://doi.org/10.3390/ijerph17239043
Chang, Y. K., Chu, C. H., Wang, C. C., Wang, Y. C., Song, T. F., Tsai, C. L., & Etnier, J. L. (2015). Dose-response relation between exercise duration and cognition. Medicine and Science in Sports and Exercise, 47(1), 159-165. https://doi.org/10.1249/mss.0000000000000383
Chang, Y. K., & Etnier, J. L. (2009). Exploring the dose-response relationship between resistance exercise intensity and cognitive function. Journal of Sport and Exercise Psychology, 31(5), 640-656. https://doi.org/10.1123/jsep.31.5.640
Chu, C. H., Kramer, A. F., Song, T. F., Wu, C. H., Hung, T. M., & Chang, Y. K. (2017). Acute exercise and neurocognitive development in preadolescents and young adults: An ERP Study. Neural Plasticity, 2017, 2631909. https://doi.org/10.1155/2017/2631909
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. https://doi.org/10.1146/annurev-psych-113011-143750
Dunsky, A., Abu-Rukun, M., Tsuk, S., Dwolatzky, T., Carasso, R., & Netz, Y. (2017). The effects of a resistance vs. an aerobic single session on attention and executive functioning in adults. PLoS One, 12(4), e0176092. https://doi.org/10.1371/journal.pone.0176092
Dalsgaard, M. K., Quistorff, B., Danielsen, E. R., Selmer, C., Vogelsang, T., & Secher, N. H. (2004). A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain. The Journal of Physiology, 554(2), 571-578. https://doi.org/https://doi.org/10.1113/jphysiol.2003.055053
Drollette, E. S., Scudder, M. R., Raine, L. B., Moore, R. D., Saliba, B. J., Pontifex, M. B., & Hillman, C. H. (2014). Acute exercise facilitates brain function and cognition in children who need it most: an ERP study of individual differences in inhibitory control capacity. Developmental Cognitive Neuroscience, 7, 53-64. https://doi.org/10.1016/j.dcn.2013.11.001
Duncan-Johnson, C. C., & Kopell, B. S. (1981). The Stroop effect: brain potentials localize the source of interference. Science, 214(4523), 938-940. https://doi.org/10.1126/science.7302571
Endo, K., Matsukawa, K., Liang, N., Nakatsuka, C., Tsuchimochi, H., Okamura, H., & Hamaoka, T. (2013). Dynamic exercise improves cognitive function in association with increased prefrontal oxygenation. The Journal of Physiological Sciences 63(4), 287-298. https://doi.org/10.1007/s12576-013-0267-6
Eklund, D., Schumann, M., Kraemer, W. J., Izquierdo, M., Taipale, R. S., & Häkkinen, K. (2016). Acute endocrine and force responses and long-term adaptations to same-session combined strength and endurance training in women. The Journal of Strength and Conditioning Research, 30(1), 164-175. https://doi.org/10.1519/jsc.0000000000001022
Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186-204. https://doi.org/10.1016/j.cortex.2016.04.023
Fernandes M. de Sousa, A., Medeiros, A. R., Del Rosso, S., Stults-Kolehmainen, M., & Boullosa, D. A. (2019). The influence of exercise and physical fitness status on attention: a systematic review. International Review of Sport and Exercise Psychology, 12(1), 202-234. https://doi.org/10.1080/1750984X.2018.1455889
Fujihara, H., Megumi, A., & Yasumura, A. (2021). The acute effect of moderate-intensity exercise on inhibitory control and activation of prefrontal cortex in younger and older adults. Experimental Brain Research. https://doi.org/10.1007/s00221-021-06086-9
Febbraio, M. A., & Dancey, J. (1999). Skeletal muscle energy metabolism during prolonged, fatiguing exercise. Journal of Applied Physiology (1985), 87(6), 2341-2347. https://doi.org/10.1152/jappl.1999.87.6.2341
Ferris, L. T., Williams, J. S., & Shen, C. L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine & Science in Sports & Exercise, 39(4), 728-734. https://doi.org/10.1249/mss.0b013e31802f04c7
Figueroa, A., Park, S. Y., Seo, D. Y., Sanchez-Gonzalez, M. A., & Baek, Y. H. (2011). Combined resistance and endurance exercise training improves arterial stiffness, blood pressure, and muscle strength in postmenopausal women. Menopause, 18(9), 980-984. https://doi.org/10.1097/gme.0b013e3182135442
Hamilton, G. F., & Rhodes, J. S. (2015). Exercise regulation of cognitive function and neuroplasticity in the healthy and diseased brain. Progress in Molecular Biology and Translational Science, 135, 381-406. https://doi.org/10.1016/bs.pmbts.2015.07.004
Hashimoto, T., & Brooks, G. A. (2008). Mitochondrial lactate oxidation complex and an adaptive role for lactate production. Medicine & Science in Sports & Exercise, 40(3), 486-494. https://doi.org/10.1249/MSS.0b013e31815fcb04
Hashimoto, T., Tsukamoto, H., Ando, S., & Ogoh, S. (2021). Effect of exercise on brain health: the potential role of lactate as a myokine. Metabolites, 11(12). https://doi.org/10.3390/metabo11120813
Hashimoto, T., Tsukamoto, H., Takenaka, S., Olesen, N. D., Petersen, L. G., Sørensen, H., Nielsen, H. B., Secher, N. H., & Ogoh, S. (2018). Maintained exercise-enhanced brain executive function related to cerebral lactate metabolism in men. FASEB Journal 32(3), 1417-1427. https://doi.org/10.1096/fj.201700381RR
Haverkamp, B. F., Wiersma, R., Vertessen, K., van Ewijk, H., Oosterlaan, J., & Hartman, E. (2020). Effects of physical activity interventions on cognitive outcomes and academic performance in adolescents and young adults: A meta-analysis. Journal of Sports Sciences 38(23), 2637-2660. https://doi.org/10.1080/02640414.2020.1794763
Hillman, C. H., Buck, S. M., Themanson, J. R., Pontifex, M. B., & Castelli, D. M. (2009). Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Developmental Psychology,45(1), 114-129. https://doi.org/10.1037/a0014437
Hillman, C. H., Castelli, D. M., & Buck, S. M. (2005). Aerobic fitness and neurocognitive function in healthy preadolescent children. Medicine and Science in Sports and Exercise37(11), 1967-1974. https://doi.org/10.1249/01.mss.0000176680.79702.ce
Ho, S., Dhaliwal, S., Hills, A., & Pal, S. (2012). The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial. BMC Public Health, 12. https://doi.org/10.1186/1471-2458-12-704
Hu, X., Bergström, Z. M., Gagnepain, P., & Anderson, M. C. (2017). Suppressing unwanted memories reduces their unintended influences. Current Directions in Psychological Science, 26(2), 197-206. https://doi.org/10.1177/0963721417689881
Harveson, A. T., Hannon, J. C., Brusseau, T. A., Podlog, L., Papadopoulos, C., Durrant, L. H., . . . Kang, K. D. (2016). Acute effects of 30 minutes resistance and aerobic exercise on cognition in a high school sample. Research Quarterly for Exercise and Sport, 87(2), 214-220. https://doi.org/10.1080/02701367.2016.1146943
Hashimoto, T., Tsukamoto, H., Takenaka, S., Olesen, N. D., Petersen, L. G., Sørensen, H., . . . Ogoh, S. (2018). Maintained exercise-enhanced brain executive function related to cerebral lactate metabolism in men. The FASEB Journal, 32(3), 1417-1427. https://doi.org/10.1096/fj.201700381RR
Huang, C. J., Lin, P. C., Hung, C. L., Chang, Y. K., & Hung, T. M. (2013,). Type of physical exercise and inhibitory function in older adults: An Event-Related Potential study. Psychology of Sport and Exercise, 15. https://doi.org/10.1016/j.psychsport.2013.11.005
Hsieh, S. S., Huang, C. J., Wu, C. T., Chang, Y. K., & Hung, T. M. (2018). Acute exercise facilitates the n450 inhibition marker and p3 attention marker during stroop test in young and older adults. Journal of Clinical Medicine, 7(11). https://doi.org/10.3390/jcm7110391
Hayes, A. F. (2022). Introduction to mediation, moderation, and conditional process analysis, third edition: A regression-based approach (3rd ed.). Guilford Publications
.
Hayes, A. F., & Preacher, K. J. (2014). Statistical mediation analysis with a multicategorical
independent variable. British Journal of Mathematical and Statistical Psychology, 67(3), 451-470. https://doi.org/10.1111/bmsp.12028
Hagströmer, M., Oja, P., & Sjöström, M. (2006). The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutrition, 9(6), 755-762. https://doi.org/10.1079/phn2005898
Jones, T. W., Howatson, G., Russell, M., & French, D. N. (2017). Effects of strength and endurance exercise order on endocrine responses to concurrent training. European Journal of Sport Science, 17(3), 326-334. https://doi.org/10.1080/17461391.2016.1236148
Kao, S. C., Cadenas-Sanchez, C., Shigeta, T. T., Walk, A. M., Chang, Y. K., Pontifex, M. B., & Hillman, C. H. (2020). A systematic review of physical activity and cardiorespiratory fitness on P3b. Psychophysiology, 57(7), e13425. https://doi.org/10.1111/psyp.13425
Kao, S. C., Baumgartner, N., Nagy, C., Fu, H. L., Yang, C. T., & Wang, C. H. (2022). Acute effects of aerobic exercise on conflict suppression, response inhibition, and processing efficiency underlying inhibitory control processes: An ERP and SFT study. Psychophysiology, e14032. https://doi.org/10.1111/psyp.14032
Kao, S. C., Westfall, D. R., Soneson, J., Gurd, B., & Hillman, C. H. (2017). Comparison of the acute effects of high-intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology, 54(9), 1335-1345. https://doi.org/10.1111/psyp.12889
Kao, V. P., Wen, H. J., Pan, Y. J., Pai, C. S., Tsai, S. T., & Su, K. Y. (2021). Combined aerobic and resistance training improves physical and executive functions in women with systemic lupus erythematosus. Lupus, 30(6), 946-955. https://doi.org/10.1177/0961203321998749
Kashihara, K., Maruyama, T., Murota, M., & Nakahara, Y. (2009). Positive effects of acute and moderate physical exercise on cognitive function. Journal of Physiological Anthropology, 28(4), 155-164. https://doi.org/10.2114/jpa2.28.155
Kleinloog, J. P. D., Mensink, R. P., Ivanov, D., Adam, J. J., Uludağ, K., & Joris, P. J. (2019). Aerobic exercise training improves cerebral blood flow and executive function: a randomized, controlled cross-over trial in sedentary older men. Frontiers in Aging Neuroscience, 11, 333. https://doi.org/10.3389/fnagi.2019.00333
Kim, B., & Feldman, E. L. (2015). Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Experimental & Molecular Medicine, 47(3), e149. https://doi.org/10.1038/emm.2015.3
Kujach, S., Olek, R. A., Byun, K., Suwabe, K., Sitek, E. J., Ziemann, E., Laskowski, R., Soya, H. (2019). Acute sprint interval exercise increases both cognitive functions and peripheral neurotrophic factors in humans: the possible involvement of lactate. Frontiers in Neuroscience, 13, 1455. https://doi.org/10.3389/fnins.2019.01455
Kao, S. C., Westfall, D. R., Soneson, J., Gurd, B., & Hillman, C. H. (2017). Comparison of the acute effects of high-intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology, 54(9), 1335-1345. https://doi.org/10.1111/psyp.12889
Kao, S.C., Drollette, E. S., Ritondale, J. P., Khan, N., & Hillman, C. H. (2018). The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychology of Sport and Exercise, 38, 90-99. https://doi.org/https://doi.org/10.1016/j.psychsport.2018.05.011
Li, D., Huang, C. J., Liu, S. C., Chang, K. H., & Hung, T. M. (2019). Exercise type relates to inhibitory and error processing functions in older adults. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition. 26(6), 865-881. https://doi.org/10.1080/13825585.2018.1540688
Ludyga, S., Mücke, M., Colledge, F. M. A., Pühse, U., & Gerber, M. (2019). A combined eeg-fnirs study investigating mechanisms underlying the association between aerobic fitness and inhibitory control in young adults. Neuroscience, 419, 23-33. https://doi.org/10.1016/j.neuroscience.2019.08.045
Lezak, M. D., Howieson, D. B., Loring, D. W., Hannay, H. J., & Fischer, J. S. (2004). Neuropsychological assessment, 4th ed..
Ludyga, S., Gerber, M., Brand, S., Holsboer-Trachsler, E., & Pühse, U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology, 53(11), 1611-1626. https://doi.org/10.1111/psyp.12736
Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Research, 1341, 12-24. https://doi.org/10.1016/j.brainres.2010.03.091
Luque-Casado, A., Perakakis, P., Hillman, C. H., Kao, S. C., Llorens, F., Guerra, P., & Sanabria, D. (2016). Differences in sustained attention capacity as a function of aerobic fitness. Medicine and Science in Sports and Exercise, 48(5), 887-895. https://doi.org/10.1249/mss.0000000000000857
Menêses, A. L., Forjaz, C. L., de Lima, P. F., Batista, R. M., Monteiro Mde, F., & Ritti-Dias, R. M. (2015). Influence of endurance and resistance exercise order on the postexercise hemodynamic responses in hypertensive women. The Journal of Strength and Conditioning Research, 29(3), 612-618. https://doi.org/10.1519/jsc.0000000000000676
McMorris, T., Turner, A., Hale, B. J., & Sproule, J. (2016). Beyond the catecholamines hypothesis for an acute exercise–cognition interaction: A neurochemical perspective. In Exercise-cognition interaction: Neuroscience perspectives. (pp. 65-103). Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-800778-5.00004-9
Murphy, P. R., Robertson, I. H., Balsters, J. H., & O'Connell R, G. (2011). Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans. Psychophysiology, 48(11), 1532-1543. https://doi.org/10.1111/j.1469-8986.2011.01226.x
Minnock, D., Annibalini, G., Le Roux, C. W., Contarelli, S., Krause, M., Saltarelli, R., . . . De Vito, G. (2020). Effects of acute aerobic, resistance and combined exercises on 24-h glucose variability and skeletal muscle signalling responses in type 1 diabetics. European Journal of Applied Physiology, 120(12), 2677-2691. https://doi.org/10.1007/s00421-020-04491-6
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., .. . Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 2693-2698. doi:10.1073/pnas.1010076108
Marson, E. C., Delevatti, R. S., Prado, A. K., Netto, N., & Kruel, L. F. (2016). Effects of aerobic, resistance, and combined exercise training on insulin resistance markers in overweight or obese children and adolescents: A systematic review and meta-analysis. Preventive Medicine, 93, 211-218. https://doi.org/10.1016/j.ypmed.2016.10.020
Mehren, A., Diaz Luque, C., Brandes, M., Lam, A. P., Thiel, C. M., Philipsen, A., & Özyurt, J. (2019). Intensity-dependent effects of acute exercise on executive function. Neural Plasticity, 2019, 8608317.
Müller, P., Duderstadt, Y., Lessmann, V., & Müller, N. G. (2020). Lactate and BDNF: Key mediators of exercise induced neuroplasticity? Journal of Clinical Medicine, 9(4). https://doi.org/10.3390/jcm9041136
Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J., & Rattray, B. (2018). Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. British Journal of Sports Medicine, 52(3), 154-160. https://doi.org/10.1136/bjsports-2016-096587
Oberste, M., Javelle, F., Sharma, S., Joisten, N., Walzik, D., Bloch, W., & Zimmer, P. (2019). Effects and moderators of acute aerobic exercise on subsequent interference control: A systematic review and meta-analysis. Frontiers in Psychology, 10, 2616. https://doi.org/10.3389/fpsyg.2019.02616
Olson, R. L., Chang, Y. K., Brush, C. J., Kwok, A. N., Gordon, V. X., & Alderman, B. L. (2016). Neurophysiological and behavioral correlates of cognitive control during low and moderate intensity exercise. Neuroimage, 131, 171-180.https://doi: 10.1016/j.neuroimage.2015.10.011.
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019
Pontifex, M. B., Hillman, C. H., & Polich, J. (2009). Age, physical fitness, and attention: P3a and P3b. Psychophysiology, 46(2), 379-387. https://doi.org/10.1111/j.1469-8986.2008.00782.x
Pontifex, M. B., Parks, A. C., Henning, D. A., & Kamijo, K. (2015). Single bouts of exercise selectively sustain attentional processes. Psychophysiology, 52(5), 618-625. https://doi.org/10.1111/psyp.12395
Pontifex, M. B., Saliba, B. J., Raine, L. B., Picchietti, D. L., & Hillman, C. H. (2013). Exercise improves behavioral, neurocognitive, and scholastic performance in children with attention-deficit/hyperactivity disorder. The Journal of Pediatrics, 162(3), 543-551. https://doi.org/10.1016/j.jpeds.2012.08.036
Postle, B. R., Brush, L. N., & Nick, A. M. (2004). Prefrontal cortex and the mediation of proactive interference in working memory. Cogn Cognitive, Affective, & Behavioral Neuroscience, 4(4), 600-608. https://doi.org/10.3758/cabn.4.4.600
Powell, C. L., Davidson, A. R., & Brown, A. M. (2020). Universal glia to neurone lactate transfer in the nervous system: physiological functions and pathological Consequences. Biosensors, 10(11), 183. https://www.mdpi.com/2079-6374/10/11/183
Rodríguez, M., Crespo, I., & Olmedillas, H. (2020). Exercising in times of COVID-19: what do experts recommend doing within four walls? Revista espanola de cardiologia , 73(7), 527-529. https://doi.org/10.1016/j.rec.2020.04.001
Rosa, G., Fortes Mde, S., & de Mello, D. B. (2016). Concurrent training decreases cortisol but not zinc concentrations: effects of distinct exercise protocols. Scientifica, 7643016. https://doi.org/10.1155/2016/7643016
Ruiz, R. J., Simão, R., Saccomani, M. G., Casonatto, J., Alexander, J. L., Rhea, M., & Polito, M. D. (2011). Isolated and combined effects of aerobic and strength exercise on post-exercise blood pressure and cardiac vagal reactivation in normotensive men. The Journal of Strength & Conditioning Research, 25(3), 640-645. https://doi.org/10.1519/JSC.0b013e3181c1fcc7
Rasmussen, P., Wyss, M. T., & Lundby, C. (2011). Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans. The FASEB Journal, 25(9), 2865-2873. https://doi.org/https://doi.org/10.1096/fj.11-183822
Reycraft, J. T., Islam, H., Townsend, L. K., Hayward, G. C., Hazell, T. J., & Macpherson, R. E. K. (2020). Exercise intensity and recovery on circulating brain-derived neurotrophic factor. Medicine & Science in Sports & Exercise, 52(5), 1210-1217. https://doi.org/10.1249/mss.0000000000002242
Schumann, M., Eklund, D., Taipale, R. S., Nyman, K., Kraemer, W. J., Häkkinen, A., . . . Häkkinen, K. (2013). Acute neuromuscular and endocrine responses and recovery to single-session combined endurance and strength loadings: "order effect" in untrained young men. The Journal of Strength and Conditioning Research. 27(2), 421-433. https://doi.org/10.1519/JSC.0b013e31827f4a10
Schumann, M., Walker, S., Izquierdo, M., Newton, R. U., Kraemer, W. J., & Häkkinen, K. (2014). The order effect of combined endurance and strength loadings on force and hormone responses: effects of prolonged training. European Journal of Applied Physiology, 114(4), 867-880. https://doi.org/10.1007/s00421-013-2813-6
Sudo, M., Komiyama, T., Aoyagi, R., Nagamatsu, T., Higaki, Y., & Ando, S. (2017). Executive function after exhaustive exercise. European Journal of Applied Physiology, 117(10), 2029-2038. https://doi.org/10.1007/s00421-017-3692-z
Segal, S. S., & Brooks, G. A. (1979). Effects of glycogen depletion and work load on postexercise O2 consumption and blood lactate. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 47(3), 514-521. https://doi.org/10.1152/jappl.1979.47.3.514
Sigal, R. J., Kenny, G. P., Boulé, N. G., Wells, G. A., Prud'homme, D., Fortier, M., Reid, R. D., Tulloch, H., Coyle, D., Phillips, P., Jennings, A., & Jaffey, J. (2007). Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Annals of Internal Medicine, 147(6), 357-369. https://doi.org/10.7326/0003-4819-147-6-200709180-00005
Son, W. M., Sung, K. D., Bharath, L. P., Choi, K. J., & Park, S. Y. (2017). Combined exercise training reduces blood pressure, arterial stiffness, and insulin resistance in obese prehypertensive adolescent girls. Clinical and Experimental Hypertension, 39(6), 546-552. https://doi.org/10.1080/10641963.2017.1288742
Secher, N. H., Seifert, T., & Van Lieshout, J. J. (2008). Cerebral blood flow and metabolism during exercise: implications for fatigue. Journal of Applied Physiology (1985), 104(1), 306-314. https://doi.org/10.1152/japplphysiol.00853.2007
Taipale, R. S., & Häkkinen, K. (2013). Acute hormonal and force responses to combined strength and endurance loadings in men and women: the "order effect". PLoS One, 8(2), e55051. https://doi.org/10.1371/journal.pone.0055051
Taipale, R. S., Mikkola, J., Nummela, A. T., Sorvisto, J., Nyman, K., Kyröläinen, H., & Häkkinen, K. (2015). Combined strength and endurance session order: differences in force production and oxygen uptake. The International Journal of Sports Physiology and Performance, 10(4), 418-425. https://doi.org/10.1123/ijspp.2014-0316
Tomoo, K., Suga, T., Sugimoto, T., Tanaka, D., Shimoho, K., Dora, K., Mok, E., Matsumoto,
S., Tsukamoto, H., Takada, S., Hashimoto, T. (2020). Work volume is an important
variable in determining the degree of inhibitory control improvements following
resistance exercise. Physiological Reports, 8(15), e14527.
https://doi.org/10.14814/phy2.14527
Tsuk, S., Netz, Y., Dunsky, A., Zeev, A., Carasso, R., Dwolatzky, T. Salem, R., Behar, S.
Rotstein, A. (2019). The acute effect of exercise on executive function and attention: resistance versus aerobic exercise. Advances in Cognitive Psychology, 15(3), 208-215. https://doi.org/10.5709/acp-0269-7
Tsukamoto, H., Suga, T., Takenaka, S., Tanaka, D., Takeuchi, T., Hamaoka, T., Isaka, T., Ogoh, S., & Hashimoto, T. (2016). Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiology & Behavior, 160, 26-34. https://doi.org/10.1016/j.physbeh.2016.03.029
Torbeyns, T., de Geus, B., Bailey, S., De Pauw, K., Decroix, L., Van Cutsem, J., & Meeusen, R. (2016). Cycling on a bike desk positively influences cognitive performance. PLoS One, 11(11), e0165510. https://doi.org/10.1371/journal.pone.0165510
Tottenham, N., Hare, T., & Casey, B. J. (2011). Behavioral assessment of emotion discrimination, emotion regulation, and cognitive control in childhood, adolescence, and adulthood. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00039
Tsai, C. L., Chen, F. C., Pan, C. Y., Wang, C. H., Huang, T. H., & Chen, T. C. (2014). Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology, 41, 121-131. https://doi.org/10.1016/j.psyneuen.2013.12.014
Tsai, C. L., Pan, C. Y., Chen, F. C., Wang, C. H., & Chou, F. Y. (2016). Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness. Experimental Physiology, 101(7), 836-850. https://doi.org/10.1113/ep085682
Tsai, C. L., Ukropec, J., Ukropcová, B., & Pai, M. C. (2018). An acute bout of aerobic or strength exercise specifically modifies circulating exerkine levels and neurocognitive functions in elderly individuals with mild cognitive impairment. NeuroImage Clinical, 17, 272-284. https://doi.org/10.1016/j.nicl.2017.10.028
Tsukamoto, H., Suga, T., Takenaka, S., Takeuchi, T., Tanaka, D., Hamaoka, T., Hashimoto, T., & Isaka, T. (2017). An acute bout of localized resistance exercise can rapidly improve inhibitory control. PLoS One, 12(9), e0184075. https://doi.org/10.1371/journal.pone.0184075
Tsukamoto, H., Suga, T., Takenaka, S., Tanaka, D., Takeuchi, T., Hamaoka, T., Isaka, T., & Hashimoto, T. (2015). Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiology & Behavior, 155. https://doi.org/10.1016/j.physbeh.2015.12.021
van Hall, G., Strømstad, M., Rasmussen, P., Jans, O., Zaar, M., Gam, C., Quistorff, B., Secher,
N. H., Nielsen, H. B. (2009). Blood lactate is an important energy source for the human brain. Journal of Cerebral Blood Flow & Metabolism, 29(6), 1121-1129. https://doi.org/10.1038/jcbfm.2009.35
van Hall, G. (2010). Lactate kinetics in human tissues at rest and during exercise. Acta Physiol (Oxf), 199(4), 499-508. https://doi.org/10.1111/j.1748-1716.2010.02122.x
Vantieghem, S., Bautmans, I., Guchtenaere, A., Tanghe, A., & Provyn, S. (2018). Improved cognitive functioning in obese adolescents after a 30-week inpatient weight loss program. Pediatric Research, 84(2), 267-271. https://doi.org/10.1038/s41390-018-0047-3
Wöstmann, N. M., Aichert, D. S., Costa, A., Rubia, K., Möller, H. J., & Ettinger, U. (2013). Reliability and plasticity of response inhibition and interference control. Brain and Cognition, 81(1), 82-94. https://doi.org/10.1016/j.bandc.2012.09.010
Wahid, A., Manek, N., Nichols, M., Kelly, P., Foster, C., Webster, P., . . . Scarborough, P. (2016). Quantifying the association between physical activity and cardiovascular disease and diabetes: A systematic review and meta-analysis. Journal of the American Heart Association, 5(9). https://doi.org/10.1161/jaha.115.002495
Wang, C.-H., Shih, C.-M., & Tsai, C.-L. (2016). The relation between aerobic fitness and cognitive performance: Is it mediated by brain potentials? Journal of Psychophysiology, 30(3), 102-113. https://doi.org/10.1027/0269-8803/a000159
Wen, H. J., & Tsai, C. L. (2020). Effects of acute aerobic exercise combined with resistance exercise on neurocognitive performance in obese women. Brain Sciences, 10(11). https://doi.org/10.3390/brainsci10110767
Wu, C. H., Karageorghis, C. I., Wang, C. C., Chu, C. H., Kao, S. C., Hung, T. M., & Chang, Y. K. (2019). Effects of acute aerobic and resistance exercise on executive function: An ERP study. Journal of Science and Medicine in Sport, 22(12), 1367-1372. https://doi.org/10.1016/j.jsams.2019.07.009
Wang, C. C., Alderman, B., Wu, C. H., Chi, L., Chen, S. R., Chu, I. H., & Chang, Y. K. (2019). Effects of acute aerobic and resistance exercise on cognitive function and salivary cortisol responses. Journal of Sport and Exercise Psychology, 41(2), 73-81. https://doi.org/10.1123/jsep.2018-0244
Wang, C. H., Moreau, D., Yang, C. T., Lin, J. T., Tsai, Y. Y., & Tsai, C. L. (2019). The influence of aerobic fitness on top-down and bottom-up mechanisms of interference control. Neuropsychology, 33(2), 245-255. https://doi.org/10.1037/neu0000507
Weiss, L. R., Venezia, A. C., & Smith, J. C. (2019). A single bout of hard RPE-based cycling exercise increases salivary alpha-amylase. Physiology & Behavior, 208, 112555. https://doi.org/10.1016/j.physbeh.2019.05.016
Wilke, J., Giesche, F., Klier, K., Vogt, L., Herrmann, E., & Banzer, W. (2019). Acute effects of resistance exercise on cognitive function in healthy adults: A systematic review with multilevel meta-analysis. Sports Medicine, 49(6), 905-916. https://doi.org/10.1007/s40279-019-01085-x
Wang, C.-H., Shih, C.-M., & Tsai, C.-L. (2016). The relation between aerobic fitness and cognitive performance: Is it mediated by brain potentials? Journal of Psychophysiology, 30(3), 102-113. https://doi.org/10.1027/0269-8803/a000159
Wang, D., Zhou, C., Zhao, M., Wu, X., & Chang, Y. K. (2016). Dose-response relationships between exercise intensity, cravings, and inhibitory control in methamphetamine dependence: An ERPs study. Drug and Alcohol Dependence, 161, 331-339. https://doi.org/10.1016/j.drugalcdep.2016.02.023
Xie, C., Alderman, B. L., Meng, F., Ai, J., Chang, Y. K., & Li, A. (2020). Acute high-intensity interval exercise improves inhibitory control among young adult males with obesity. Front Psychol, 11, 1291. https://doi.org/10.3389/fpsyg.2020.01291
Yanagisawa, H., Dan, I., Tsuzuki, D., Kato, M., Okamoto, M., Kyutoku, Y., & Soya, H. (2010). Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage, 50(4), 1702-1710. https://doi.org/10.1016/j.neuroimage.2009.12.023
Yardley, J. E., Kenny, G. P., Perkins, B. A., Riddell, M. C., Malcolm, J., Boulay, P., Khandwala, F., & Sigal, R. J. (2012). Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes. Diabetes Care, 35(4), 669-675. https://doi.org/10.2337/dc11-1844
Yang, Y., Shields, G. S., Guo, C., & Liu, Y. (2018). Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neuroscience & Biobehavioral Reviews, 84, 225-244. https://doi.org/10.1016/j.neubiorev.2017.11.020