研究生: |
洪禕璨 |
---|---|
論文名稱: |
以Generalized Hebbian Algorithm 為基礎的主成分分析之硬體實現 |
指導教授: | 黃文吉 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | Generalized Hebbian Algorithm 、主成分分析 、可程式化系統晶片 、現場可編程邏輯閘陣列 |
論文種類: | 學術論文 |
相關次數: | 點閱:219 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對主成分分析(principle component analysis, PCA)提出一個以generalized Hebbian algorithm (GHA)為基礎的硬體架構。在此硬體架構中,我們讓負責突觸權重向量(synaptic weight vectors)更新的部分分為若干個層級(stages),前一個層級所計算出來的結果將傳送至下一個層級使用,來達到加快訓練速度以及降低面積成本(area cost)的目的。本文所提出的硬體架構已實作並嵌入於可程式化系統晶片(system-on-programmable-chip, SOPC)之平台。由實驗結果顯示,此硬體架構是一種有效且可代替主成分分析之運算,亦能獲得高性能與低計算時間之結果。
This paper presents a novel hardware architecture for fast principle component analysis (PCA). The architecture is based on generalized Hebbian algorithm (GHA). In the architecture, the updating of different synaptic weight vectors are divided into a number of stages. The results of precedent stages will be used for the computation of subsequent stages for expediting training speed and lowering the area cost. The proposed architecture has been embedded in a system-on-programmable-chip (SOPC) platform for physical performance measurement. Experimental results show that the proposed architecture is an effective alternative for fast PCA attaining both high performance and low computational time.
[1] Brown, S., FPGA architectural research: a survey, IEEE Design & Test of Computers, Vol. 13, pp.9-15, 1996.
[2] Ciletti, M.D., Advanced Digital Design with the Verilog HDL, Prentice Hall, 2003.
[3] Cyclone III Device Handbook, 2010, Altera Corporation. http://www.altera.com/products/devices/cyclone3/cy3-index.jsp
[4] Gottumukkal, R., and Asari, V.K., "An improved face recognition technique based on modular PCA approach," Pattern Recognit. Lett., vol. 25, no. 4, pp. 429–436, Mar. 2004.
[5] Gunter S., Schraudolph,N.N., Vishwanathan, S.V.N., "Fast Iterative Kernel Principal Component Analysis," Journal of Machine Learning Research, pp.1893-1918, 2007.
[6] Hauck, S., and Dehon, A., Reconfigurable Computing, Morgan Kaufmann, 2008.
[7] Haykin, S., Neural Networks and Learning Machines, 3rd Ed., Pearson, 2009.
[8] Hubert, M., and Engelen, S., "Robust PCA and classification in biosciences," Bioinformatics, pp.1728-1736, 2004.
[9] Jolliiffe, I.T., Principal component Analysis, 2nd Ed., Springer, 2002.
[10] Karhunen, J., and Joutsensalo, J., "Generalization of Principal Component Analysis, Optimization Problems, and Neural Networks," Neural Networks, pp.549-562, 1995.
[11] Kim, K., Franz, M.O., and Scholkopf, B., "Iterative kernel principal component analysis for image modeling," IEEE Trans. Pattern Analysis and Machine Intelligence, pp.1351V1366, 2005.
[12] Navarrete, P., and Ruiz-del-Solar, J., "Eigenspace-based recognition of faces: Comparisons and a new approach," in Proc. ICIAP, pp. 42–47, 2001.
[13] NIOS II Processor Reference Handbook, 2010, Altera Corporation. http://www.altera.com/literature/lit-nio2.jsp
[14] NIOS II Software Developer’s Handbook, 2010, Altera Corporation. http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
[15] Oja, E., "A simplified neuron model as a principal component analyzer." Journal of Mathematical Biology, 15, 267-273. 1982.
[16] Partridge, M., and Calvo, R., "Fast dimensionality reduction and Simple PCA. Intelligent Data Analysis," pp. 292–298, 1997.
[17] Perlibakas, V., "Distance measures for PCA-based face recognition," Pattern Recognit. Lett., vol. 25, no. 6, pp. 711-724, Apr. 2004.
[18] Sanger, T.D., "Optimal unsupervised learning in a single-layer linear feedforward network." Neural Networks, 2:459–473, 1989.
[19] Sattler, M., Sarlette, R., and Klein, R., "Simple and efficient compression of animation sequences," Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2005.
[20] Sharma, A., and Paliwal, K.K., "Fast principal component analysis using fixed-point algorithm," Pattern Recognition Letters, pp. 1151-1155, 2007.
[21] Soderstrom, U., and Li, H., "High Definition Wearable Video Communication," Lecture Notes in Computer Science, Vol. 5575, pp. 500-512, 2009.
[22] Storer, M., Roth P.M., Urschler, M., and Bischof, H., "Fast-Robust PCA," Lecture Notes in Computer Science, Vol.5575, pp.430-439, 2009.
[23] Yambor, W.S., Draper, B.A., Beveridge, J.R., "Analyzing PCA-based Face Recognition Algorithms: Eigenvector Selection and Distance Measures," in Christensen, H., Phillips, J. (eds.) Empirical Evaluation Methods in Computer Vision. World Scientific Press, 2002.
[24] Yang, J., Zhang, D., Frangi, A. F., and Yang, J.Y., "Two-dimensional PCA: A new approach to appearance-based face representation and recognition," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 26, no. 1, pp. 131–137, Jan. 2004
[25] Zuo, W., Zhang, D., and Wang, K., "Bidirectional PCA with assembled matrix distance metric for image recognition," IEEE Trans. Systems, Man, and Cybernetics—PART B: Cybernetics, pp.863-872, Vol. 36, 2006.