研究生: |
洪政耀 Hung, Cheng-Yao |
---|---|
論文名稱: |
區域災害系統評估不同空間尺度之災害風險研究 - 以臺灣臺東縣坡地環境為例 Using regional disaster system to access multiple spatial scale disaster risk: An example of Hillside environment, Taitung County, Taiwan |
指導教授: |
林雪美
Lin, Hsueh-Mei |
學位類別: |
博士 Doctor |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 251 |
中文關鍵詞: | 區域災害系統 、孕災環境敏感度 、致災因子危害度 、承災體曝露與脆弱度 、風險 、塊體崩壞 |
英文關鍵詞: | Regional Disaster System, Sensitivity of Potential Hazard Environment, Hazard of Extreme Natural Phenomena, Exposure and Vulnerability of Residents, Risk, Mass Wasting |
論文種類: | 學術論文 |
相關次數: | 點閱:397 下載:63 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
災害是人類資源經營系統與自然環境間交互作用的產物。世界銀行指出臺灣曝露於三種自然災害下之人口與面積均為世界之冠。在臺灣,過去十年來自然現象所導致的災害損失逐年上升,因此深入了解災害發生的原因有其必要性,且藉由了解災害發生之因,落實有效的預備、減災措施,可將災害損失降低。首先,需收集並確認災害的點位、分析災害的孕災環境因素以推估相鄰的環境特性,找出環境敏感地帶。再者,災害對於居民會產生多大的風險程度,並不只能考慮孕災環境與致災因子可能造成的威脅,還必須考慮承災體的曝露與脆弱程度,這扮演著相當關鍵的角色。近年來,國內外整合型災害研究日漸盛行,其研究成果常將國家尺度指標直接應用至地方縣市尺度評估,因此無法突顯區域特性,掩蓋次國家尺度等級之變化,成果難以深入了解災害風險之因。故本研究欲整合坡地災害兩大類群研究的風險評估,並考量不同空間尺度所需選擇指標不同之問題。目的就是以區域災害系統論,提供一個了解人與環境之間互動的有利分析方式,並結合GIS平臺以空間化的方式展現其成果。
孕災環境敏感度部分,本研究採用坡度、高程、坡向、地質、邊坡縱向曲率與橫向曲率、土地利用、河流距離、斷層距離、道路距離、NDVI,共11項指標,以及各種降雨型態指標評估致災因子。結果發現,不同地區因為環境的特性不同,影響塊體崩壞潛在因子的重要程度將會有所不同,但NDVI與坡度二者指標不受空間尺度與區域塊體崩壞特性影響,適用各種大小尺度範圍。
在承災體曝露量與脆弱度部分,本研究將建物、道路與耕作地做為承災體曝露之型態;脆弱度部分選用低收入戶、身心障礙人口、離婚與喪偶率、教育程度、扶養比、醫療資源、聯外道路、人口密度等適合地方至全國尺度之指標,以及評估最小尺度個體、村落適應能力之災害識覺與調適行為。結果發現,大尺度縣市評估難以準確評估各鄉、各部落的脆弱程度。
在風險評估方面,本研究將極端現象影響下的自然危害程度、承災體曝露量,以及承災體脆弱程度標準化,加總平均得到範圍介於0-1之間的風險值。整體而言,不同空間尺度的分析成果確實不同,以大尺度評估容易掩蓋小尺度的區域特性。以三鄉尺度評估結果來看,海端鄉應是風險最高地區,金峰鄉與大武鄉互有高低。事實上並非如此,大武鄉因區域面積小,易受大尺度均化影響,而忽略其風險程度。實際上若以村尺度而言,大武鄉大鳥村的風險值與海端鄉利稻村相當。最後,本研究發現若大小空間尺度的劃分一致(如以主流域做為劃分),則鄉與村區域特性相近,風險變化之間的差異小,若不一致則反之。故在進行災害研究時,若未重視不空間尺度與區域特性之差異,其風險結果將會嚴重偏離災害的真實性,難以探究災害之因。
本研究提出的概念是地理學者長期關注的人地互動關係,概念的重新詮釋,以及透過GIS的應用,表現區域災害風險在空間與時間的變化性,對於學科未來在災害管理上能有重大的貢獻。整合自然與人文的概念角度出發,對於中央政府由在地思考擬定合適的防災政策、規劃都具有實質的應用價值。
A natural hazard may be defined as a systematic interaction between human resource management and extreme or rare natural phenomena. The World Bank has reported Taiwan as the most vulnerable country in the world in terms of the percentages of exposed areas and multiplicity disaster. In Taiwan, losses from extreme natural phenomena have escalated in the past decade. There is a noticeable change in policy, with more emphasis on loss reduction through mitigation, preparedness, and recovery programs. Effective mitigation of losses from hazards requires hazard identification, analysis of the time and spatial characteristics of mass wasting, and assessment of the sensitivity of potential hazard environment along the side of study area. The degree to which populations are vulnerable to hazards, however, is not solely dependent upon proximity to the source of the threat or the physical nature of the hazard—exposure and vulnerability of residents also play a significant role in determining vulnerability. Integrated study of potential environment with residents’ vulnerability is now a popular topic around the world. Although the results could usually found national-level indices were applied to sub-national level directly, it is impossible to apply a national-level index to a smaller scale of analysis, or indeed to aggregate risk across scales, because the processes that cause risk are manifest differently at each scale.The regional disaster system provides us with a method of analyzing relationships between residents and environment, and with spatially presented results through GIS. The formation of a disaster is usually complex and need to be studied comprehensively. In this study, we used regional disaster system to interpret causes of disaster in terms of different spatial scales.
Eleven geographic factors are included in the sensitivity analysis of potential hazard Environment as covariates: slope, elevation, aspect, land-use, profile curvature, plane curvature, lithology, distance to streams, distance to roads, distance to fault, and NDVI. Different patterns of precipitation are used to analyze the factors of cause to extreme natural phenomena. We found that because of the different environmental characteristics in different regions, the weights of the variables of mass wasting are also different. However, NDVI and slope are the most important variables regardless of spatial scales and characteristics of environment.
In this study we use three social exposure indexes and eight vulnerability indexes characteristics to assess residents’ vulnerability form place scale to country scale in our study area. Besides, we used perceptions and adjustment indexes to assess the capability of adjustment for scales of individual to place. We found that county-scale assessment was difficult to assess the vulnerability of place (village) scale accurately.
For risk assessment, we produce a risk value ranging from 0 to 1, which is a standardized value of summating mass wasting sensitivity, exposure of residents and vulnerability of residents. Our results suggest that large scale assessment obscured the characteristics of smaller scales. For the township scale, the most vulnerable one is Hai-Duag Township. In fact, the risk is also very high in Da-Niau village of Da-Wu township, but Da-Wu township area was too small and easily equalized by large scale assessment. Furthermore, we found that when the standards of dividing boundaries for spatial scales are the same, their risks are very similar, and vice versa. Thus, in order to explore the causes of disasters, we suggested that researchers should pay attention to spatial scales and characteristics of regions.
This paper is a re-interpretation of the long-standing “human-environment or nature-society” research in geography. A geographic information system was utilized to present spatial and temporal variations for regional disaster system. The conceptualization of regional disaster system provides a powerful selling point for the salience of the discipline to public policy, urban planning and disaster management and other related disciplines.
中文部分
1. 王文能、吳仁明、張義雄、謝金德(1999)臺灣中部南投丘陵地區地滑之特性,中華水土保持學報,31(3):167-175。
2. 王保進(2004)多變量分析:套裝程式與資料分析,臺北:高等教育文化事業有限公司。
3. 王虹萍、周天穎(2010)結合層級分析法與模糊理論於土石流潛勢評估之研究─以陳有蘭溪集水區為例,水保技術,5(1):13-22。
4. 史培軍(2002)三論災害研究的理論與實踐,自然災害學報,11(3):1-9。
5. 史培軍(2005)四論災害系統研究的理論與實踐,自然災害學報,14(6):1-7。
6. 史培軍(2009)五論災害系統研究的理論與實踐,自然災害學報,18(5):1-9。
7. 田亞平、劉沛林、鄭文武(2005)南方丘陵區的生態脆弱度評估─以衡陽盆地為例,地理研究,24(6):843-852。
8. 石再添等(1998)地學通論(自然地理概論)第三版,臺北:固地文化。
9. 石再添等(2008)地學通論(自然地理概論)第四版,臺北:固地文化。
10. 行政院農委會水土保持局(1992)水土保持手冊,臺北:水土保持局。
11. 何春蓀(1990)普通地質學,國立編譯館主編:五南圖書出版有限公司。
12. 吳佐川(1992)臺灣地區崩塌地區域特性之研究,臺北:國立臺灣大學森林學研究所碩士論文。
13. 吳杰穎、江宜錦(2008)臺灣天然災害統計指標體系建構與分析,地理學報,51:65-84。
14. 李宗霖、林宏明、盧育聘(2004)類神經網路在南橫公路邊坡破壞潛能之預測,立德學報,2(1):97-115。
15. 李欣輯、楊惠萱(2012)坡地災害社會脆弱度指標評估與應用,都市與計劃,39(4):375-406。
16. 李堅明、陳建智(2010)臺灣脆弱性指標建構與評估之研究,都市與計劃,37(1):71-96。
17. 李錫堤、費立沅(2011)蘭陽溪流域之山崩土石流潛在危害預測,前瞻科技與管理,1(2):67-83。
18. 李嶸泰、張嘉琪、詹勳全、廖珮妤、洪雨柔(2012)應用羅吉斯迴歸法進行阿里山地區山崩潛勢評估,中華水土保持學報,43(2):167-176。
19. 周憲德、廖偉民、姚善文(2002)發生土石流之臨界降雨特性分析,中國土木水利工程學刊,14(1):1-8。
20. 林俊全、任家弘(2003)集水區潛在崩塌災害問題之探討─以水里溪流域為例,中華水土保持學報,34(4):303-315。
21. 林俊全、鄭宏祺、任家弘、吳水吉(2010)大甲溪流域崩山災害之研究,工程環境會刊,24:11-22。
22. 林冠慧(2011)流域集水區人類與環境系統脆弱性分析架構之建立:臺灣新竹縣尖石鄉大漢溪上游石門水庫集水區泰雅族部落為例,臺北:國立臺灣大學地理環境資源學研究所博士論文。
23. 林炳森、馮賜陽、李俊明(1993)礫石層土石流發生特性之研究,中華水土保持學報,24(1):55-64。
24. 林書毅(1998)區域性山坡穩定評估方法探討─以林口臺地為例,桃園:國立中央大學應用地質研究所碩士論文。
25. 林雪美(2004)臺灣地區近三十年自然災害的時空特性,師大地理研究報告,41:99-128。
26. 林雪美、洪政耀(2009)新竹縣五峰鄉、尖石鄉坡地災害系統與災害識覺關聯之研究,華岡地理學報,24:1-18。
27. 施添福(1980)地理學中的人地傳統及其主要的研究主題,師大地理研究報告,6:203-242。
28. 洪政耀、林雪美(2009)新竹縣五峰鄉、尖石鄉坡地災害系統研究,2009中國地理學會學術論文發表會論文集:154-155。
29. 洪政耀、林雪美(2010)新竹縣五峰、尖石鄉坡地災害對居民的災害識覺與調適行為之研究,工程環境會刊,25:23-32。
30. 洪政耀、林雪美(2012a)區域災害系統研究─以臺東縣海端鄉為例。災害防救科技與管理學刊,1(2):17-41。
31. 洪政耀、林雪美(2012b)區域災害系統論坡地災害風險評估,工程環境會刊,29(已接受)。
32. 洪政耀、林雪美(2012c)羅吉斯回歸與不安定指數應用於塊體崩壞敏感度評估比較─以臺東縣海端鄉為例,中國地理學會會刊,49:77-103。
33. 洪鴻智、王翔榆(2010)多元性區域環境風險評估:以陽明山國家公園為例,都市與計劃,37(1):97-119。
34. 洪鴻智、陳令韡(2012)颱洪災害之整合性脆弱度評估─大甲溪流域之應用,地理學報,65:79-96。
35. 徐美玲、王秋原(1991)影響基隆河流域居民對其住家環境之識覺及因應行為因子之研究,中國地理學會會刊,18:23-39。
36. 張石角(1995)臺灣東部之環境地質分區與崩塌類型,工程環境會刊,14:59-85。
37. 張立憲(1985)土石流特性之探討,中華水土保持學報,16(1):135-141。
38. 張長義(1977)環境識覺與自然災害之研究,中國地理學會會刊,5:56-60。
39. 張長義(1984)環境變遷認知之空間差異-一個臺灣農村社區之研究,中國地理學會會刊,16:21-33。
40. 張長義(1993)宜蘭平原海岸地區環境災害之識覺空間差異之研究,臺大地理學報,12:22-29。
41. 張長義(1997)雲嘉南地區土地利用、災害識覺及環境調適之研究-口湖鄉之個案(四),行政院國家科學委員會專題研究計畫成果報告,NSC86-2621-P002-054。
42. 張學群(2005)降雨影響對邊坡地滑數值模擬關係之個案探討,桃園:中原大學土木工程研究所碩士論文。
43. 許煜煌(2002)以不安定指數法進行地震引致坡地破壞模式分析,臺北:國立臺灣大學土木工程學研究所碩士論文。
44. 連惠邦、趙世照(1996)溪床堆積土體崩壞模式及其土石流化之研究,中華水土保持學報,27(3):175-183。
45. 陳怡睿、林洧全、謝舜傑(2011)坡地利用影響山崩潛勢之評估模式建置─以寶來地區歷經莫拉克颱風為例,中華水土保持學報,42(3):251-262。
46. 陳昆廷、蔡光榮、王宣惠、林欽川(2008)多變量不安定指數分析法應用於屏東山區道路邊坡崩塌潛感評估模式之建置研究,中興工程季刊,100:65-72。
47. 陳昆揮(2006)模糊理論應用於土石流危險評估系統之研究,臺中:逢甲大學土木工程所碩士論文。
48. 陳明杰(2001)山坡地崩塌的特性,林業研究專訊,8(4):17-19。
49. 陳亮全、陳海立(2007)易致災都市空間發展之探討:以臺北盆地都市水災形成為例,都市與計劃,34(3):293-315。
50. 陳亮全、劉怡君、吳杰穎(2007)重返家園:紐奧良的災後重建,國研科技,16:85-90。
51. 陳信雄(1984)安通地滑區域之機制及其對策之研究,臺大森林系,1-99。
52. 陳信雄、邱祈榮、康恬慎(2001)地理資訊系統於石門水庫集水區崩塌地特性分析之研究,國立臺灣大學農學院實驗林研究報告,15(3):203-222
53. 陳榮河、歐泰林(2006)區域性土石流之發生機制,地工技術,110:25-34。
54. 陳樹群、馮智偉(2005)應用Logistic迴歸繪製崩塌潛感圖─以濁水溪流域為例,中華水土保持學報,36(2):191-201。
55. 陳樹群、馮智偉、吳俊毅、黃柏璁、王价巨(2006):土石流潛勢區域之風險評估及災害管理,地工技術,110:45-54。
56. 游中榮(1995)應用地理資訊系統於北橫地區山崩潛感之研究,國立中央大學應用地質研究所碩士論文。
57. 游繁結(1998)認識土石流,科學知識,48:7-14。
58. 游繁結(2002)土石流之機制,林業研究專訊,9(1):1-4。
59. 黃漢淨(2008)淺談森林之崩塌地,臺灣林業,34(6):54-64。
60. 傳裕盛、曹鎮、徐義人(2005)模糊理論應用於土石流危險度分析之研究,中華水土保持學報,36(2):113-122。
61. 楊明德、蘇東青、楊曄芬(2005)草嶺地區土石流潛勢調查與評估,中華水土保持學報,36(3):301-312。
62. 楊景春(1990)地貌學教程,臺北:明文書局。
63. 詹錢登(2000)土石流概論,臺北:科技圖書。
64. 詹錢登(2004)豪雨造成的土石流,科學發展月刊,374:14-23。
65. 臺東縣政府主計室(2001-2009)臺東縣統計要覽,臺東縣政府。
66. 臺灣氣候變遷推估與資訊平臺建置計畫(2011)臺灣氣候變遷科學報告2011,臺北:行政院國家科學委員會。
67. 趙振平、高玉錠(2006)利用地理資訊系統分析南勢溪集水區坡地災害危險度因子與評估準則之研究,華梵藝術與設計學報,2:240-256。
68. 趙振平、高玉錠(2007)不安定指數法改進模式應用於南勢溪集水區山崩潛感分析之研究,中華水土保持學報,38(2):123-133。
69. 潘國樑(1996)新中橫公路受賀伯風災之遙測技術,地工技術,57:45-54。
70. 蔡光榮、陳昆廷、王宣惠、林欽川(2008)類神經網路分析法應用於臺灣南投坡地社區環境潛勢災害風險評估模式之建置,鑛冶,52(4):55-74。
71. 蔡光榮、劉明忠、戴君翰、施俊廷(2006)臺灣中部山區道路邊坡崩塌特性之數值分析模式建置,臺灣公路工程,32(12):33-45。
72. 蔡光榮、謝正倫、周士傑、曾皇銘、陳昆廷(2010)類神經網路分析法應用於高雄壽山坡地社區邊坡崩塌潛感區之劃定,臺灣礦業,62(3):35-42。
73. 鄭大偉、王淑慧、魏鎮東(2001)類神經網路應用於道路邊坡落石坍方預測之可行性研究,鑛冶,45(3):104-111。
74. 鄭清江、黃鑑水、陳婉菱、洪廷偉、洪義欽(2006)南勢溪集水區流域坡地崩塌與環境地質之關係,華梵藝術與設計學報,2:158-172。
75. 蕭煥章(2008)水災脆弱性評估模式之建立—以汐止市為例,臺北:中國文化大學地理研究所博士論文。
76. 謝正倫、黃敏郎、蔡在宗、張維恕(2010)運用福衛二號影像進行莫拉克颱風崩塌地判釋,中華防災學刊,2(1):35-42。
77. 羅偉、柯明淳、傅文勳(2001)新竹縣尖石鄉地區居住環境潛在地質災害之研究,華岡地理學報,18:47-78。
78. 蘇明道、王元愷、劉哲欣、林俊宏(1999)空間分析在土石流發生潛勢研討之應用─以陳有蘭溪為例,農業工程學報,45(2):52-62。
79. 蘇苗彬、陳毅輝、方俊傑(2009)應用不安定指數法於坡地崩塌之潛勢分析,水土保持技師公會,4(1):9-23。
外文部分
1. Adger, W. N. (2006) Vulnerability, Global environment change, 16: 268-281.
2. Adger, W. N., Books, N., Bentham, G., Agnew, M. and Eriksen, S. (2004) New indicators of vulnerability and adaptive capacity - Technical Report 7, Norwich: Tyndall Centre for Climate Change Research.
3. Alcántara-Ayala, I. and Goudie, A. (2010) geomorphological hazards and disaster prevention, Cambridge: Cambridge University Press.
4. Alexander, D. (1992) On the Causes of Landslides: Human Activities, Perception, and Natural Process, Environment Geology and Water Sciences, 20(3): 165-179.
5. Alexander, D. (1993) Natural Disasters, London: UCL Press.
6. ALI, A. M. S. (2007) September 2004 Flood Event in Southwestern Bangladesh: A Study of its Nature, Causes, and Human Perception and Adjustments to a New Hazard, Natural Hazards, 40: 89-111.
7. American Geological Institute (1984) Glossary of geology, Falls Church, Virginia: American Geological Institute.
8. Anbalagan, R. and Singh, B. (1996) Landslide hazard and risk assessment mapping of mountainous terrains - a case study from Kumaun Himalaya, India, Engineering Geology, 43: 237-246.
9. Bednarik, M., Yilmaz, I. and Marschalko, M. (2012) Landslide hazard and risk assessment: a case study from the Hlohovec–Sered’ landslide area in south-west Slovakia, Natural Hazards, 64: 547-575.
10. Bell, P. A., Fisher, J. D., Baum, A., and Greene, T. E. (1984) Environmental Psychology, New York: Holt, Rinehart, and Winston.
11. Bell, R. and Glade, T. (2004) Quantitative risk analysis for landslides – Examples from Bíldudalur, NW-Iceland, Natural Hazards and Earth System Sciences, 4: 117-131.
12. Bettalanffy, L. V. (1950) The theory of open systems in physics and biology, Science, 111: 23-29.
13. Birkmann, J. (2006) Measuring vulnerability to promote disaster resilient societies: conceptual frameworks and definitions. In: Birkmann, J. (eds.) Measuring Vulnerability to Natural Hazards, UNU Press, 9-54.
14. Birkmann, J. and Fernando, N. (2008) Measuring revealed and emergent vulnerabilities on coastal communities to tsunami in Sri Lanka, Disasters, 32(1): 82-105.
15. Birkmann, J., von Teichman, K., Aldunce, P., Bach, C., Nguyen Thanh, B., Garschagen, M., Kanwar, S., Setiadi, N. and LeHogoc, T. (2009) Addressing the challenge: recommendations and quality criteria. In: Birkmann, J., Tetzlaff, G. and Zehntel, K-O. (eds.) Linking disaster risk reduction and adaptation to climate change, DKKV Publication Series 38, Bonn.
16. Boruff, B. J., Emrich, C and Cutter, S. L. (2005) Erosion hazard vulnerability of US coastal counties, Journal of Coastal Research, 21(5): 932-942.
17. Brilly, M. and Polic, M. (2005) Public Perception of Flood Risks, Flood Forecasting and Mitigation. Natural Hazards and Earth System Sciences, 5: 345-355.
18. Brunsden, D. (2001) A critical assessment of the sensitivity concept in geomorphology, Catena, 42: 99-123.
19. Brunsden, D. (2002) Geomorphological roulette for engineers and planners: some insights into an old game, Quarterly Journal of Engineering Geology and Hydrology, 35: 101-142.
20. Brunsden, D. and Thornes, J. B. (1979) Landscape sensitivity and change, Transactions of the Institute of British Geographers, New Series, 4: 436-484.
21. Bui, D. T., Lofman, O., Revhaug , I. and Dick, O. (2011) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression, Natural Hazard, 59: 1413-1444.
22. Burton, I. and Kates, R. W. (1964) The Perception of Natural Hazards in Resource Management, Natural Resources Journal, 3(3): 412-441.
23. Burton, I., Kates, R. W. and White, G. F. (1993) The environment as hazard (2nd ed.), New York: Oxford University Press.
24. Canals, M., Lastras, G., Urgeles, R., Casamor, J. L., Mienert, J. et al., (2004) Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project, Marine Geology, 213: 9-72.
25. Capra, L., Lugo-Hubp, J. and Borselli, L. (2003) Mass movements in tropical volcanic terrains: the case of Teziutlan (Mexico), Engineering Geology, 69: 359-379.
26. Carrara, A., Cardinali, M., Guzzetti, F. and Reichenbach, P. (1995) GIS technology in mapping landslide hazard. In: Carrara, A. and Guzzetti, F. (eds.) Geographical Information Systems in Assessing Natural Hazards, Dordrecht Netherlands: Kluwer Academic Publishers, 135-175.
27. Chang, K. T., Chiang, S. H. and Hsu, M. L. (2007) Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression, Geomorphology, 89: 335-347.
28. Chapman, D. (1994) Natural Hazards, New York: Oxford University press.
29. Chau, K. T. and Chan, J. E. (2005) Regional bias of landslide data in generating susceptibility maps using logistic regression: Case of Hong Kong Island, Landslides, 2: 280-290.
30. Chauhan, S., Shama, M. and Arora, M. (2010) Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model, Landslides, 7: 411-423.
31. Chen, H., Dadson, S. and Chi, Y. G. (2006) Recent rainfall-induced landslides and Landslides hazard zonation: a review of principles and practice debris flow in northern Taiwan, Geomorphology, 77: 112-125.
32. Chen, Z. H. and Wang, J. F. (2007) Landslide hazard mapping using logistic regression model in Mackenzie Valley, Canada, Natural hazards, 42: 75-89.
33. Chorley, R. C. and Kennedy, B. A. (1971) Physical geography : a systems approach, London: Prentice-Hall International.
34. Corominas, J. and Moya, J. (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain, Geomorphology, 30: 79-93.
35. Crozier, M. J. (1989) Landslides: Causes, Consequences and Environment, London: Routledge.
36. Crozier, M. J. (1993) Management Issues Arising from Landslides and Related Activity, New Zealand Geographer, 49(1): 35-37.
37. Crozier, M. J. (2005) Management Frameworks for Landslide Hazard and Risk: Issues and Options, In: Glade, T. et al., (eds.) Landslide hazard and risk, Chichester: Wiley, Ch.11.
38. Crozier, M. J., McClure, J., Vercoe, J. and Wilson, M. (2006) The effects of hazard zone information on judgements about earthquake damage, Area, 38(2): 143-152.
39. Cruden, D. M. and Varnes, D. J. (1996) Landslide types and processes, Landslides-Investigation and Mitigation, Special Report, Washington: National Academy Press, 36-75.
40. Cutter, S. L. (1996) Vulnerability to environmental hazards, Progress in Human Geography, 20(4): 529-539.
41. Cutter, S. L. (2003) The Vulnerability of Science and the Science of Vulnerability, Annals of the Association of American Geographers, 93(1): 1-12.
42. Cutter, S. L. (2006) Hazard, Vulnerability and Environmental Justice, London: Sterling press.
43. Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E. and Webb, J. (2008) A place-based model for understanding community resilience to natural disasters, Global Environmental Change, 18: 598-606.
44. Cutter, S. L., Boruff, B. J. and Shirley, W. L. (2003) Social Vulnerability to Environmental Hazards, Social Science Quarterly, 84(2): 242–261.
45. Cutter, S. L., Mitchell, J. T. and Scott, M. S. (2000) Revealing the Vulnerability of People and Places: A Case Study of Georgetown county, South Carolina, Annals of the Association of American Geographers, 90(4):713-737
46. Dai, F. C. and Lee, C. F. (2003) A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression, Earth Surface Processes and Landforms, 28: 527-545.
47. Darbra, R. M., Crawford, J. F. E., Haley, C. W. and Morrison, R. J. (2007) Safety Culture and Hazard Risk Perception of Australian and New Zealand Maritime Pilots. Marine Policy, 31(6): 736-745.
48. Das, I., Sahoo, S., Van Westen, C., Stein, A. and Hack, R. (2010) Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India), Geomorphology, 114: 627-637.
49. De Graff, J. V., SIDLE, R. C., Ahmad, R. and Scatena, F. N. (2012) Recognizing the importance of tropical forests in limiting rainfall-induced debris flows, Environmental Earth Sciences, 67(4): 1225-1235.
50. de Vita, S., Sansivero, F. and Orsi, G. (2006) Cyclical slope instability and volcanism related to volcano-tectonism in resurgent calderas: The Ischia island (Italy) case study, Engineering Geology, 86: 148-165.
51. Dikau, R., Brunsden, D., Schrott, L., Ibsen, M. (1996) Landslide Recognition: Identification, movement and causes, Chichester: John Wiley and Sons Ltd.
52. Dilley, M., Chen , R. S., Deichmann, U. et al., (2005) Natural disaster hotspots: A global risk analysis, Washington: World Bank press.
53. Dong, J. J., Tung, Y. H., Chen, C. C., Liao, J. J. and Pan, Y. W. (2011) Logistic regression model for predicting the failure probability of a landslide dam, Engineering Geology, 117: 52-61.
54. Downs, R. M. (1970) Geographic space perception: past approaches and future prospects, In Board, C. et al., (eds.) Progress in Geography 2, London: Edward Arnold Press, 65-108.
55. Embleton, C. and Thornes, J. (1979) Process in geomorphology, London: Edward Arnold.
56. Erener, A., Sebnem, H. and Düzgün, B. (2010) Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway), Landslides, 7: 55-68.
57. Fekete, A., Damm, M. and Birkmann, J. (2010) Scales as a challenge for vulnerability assessment, Natural Hazards, 55: 729-747.
58. Felicísimo, Á., Cuartero, A., Remondo, J. and Quirós, E. (2013) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study, Landslides, 10(2): 175-189.
59. Fűssel, H. M. (2007) Vulnerability: A generally applicable conceptual framework for climate change research, Global Environmental Change, 17: 155-167.
60. Fűssel, H. M. (2010) How inequitable is the global distribution of responsibility, capability, and vulnerability to climate change: A comprehensive indicator-based assessment, Global Environmental Change, 20: 597-611.
61. Galli, M. and Guzzetti, F. (2007) Landslide Vulnerability Criteria: A Case Study from Umbria, Central Italy, Environment Management, 40: 649-664.
62. Glade, T. (2003) Landslide occurrence as a response to land use change: a review of evidence from New Zealand, Catena, 51: 297-314.
63. Glade, T., Anderson, M. and Crozier, M. (2006) Landslide hazard and risk, Hoboken: John Wiley.
64. Glade, T., Crozier, M. and Smith, P. (2000) Applying Probability Determination to Refine Landslide-triggering Rainfall Thresholds Using an Empirical ‘‘Antecedent Daily Rainfall model”, Pure and Applied Geophysics, 157: 1059-1079.
65. Golledge, R. G. and Stimson, R. J. (1987) Analytical behavioural geography, London: Croom Helm press.
66. Gorsevski, P. V., Gessler, P. E., Foltz, R. B. and Elliot, W. J. (2006) Spatial Prediction of Landslide Hazard Using Logistic Regression and ROC Analysis. Transactions in GIS, 10(3): 395-415.
67. Gowrie, M. N. (2003) Environmental vulnerability index for the island of Tobago, West Indies, Conservation Ecology Conservation Ecology, 7(2): 11-27.
68. Gregory, D., Johnston, R., Pratt, G., Watts, M.J. and Whatmore, S. (2009) The dictionary of human geography(5th), Malden, MA: Wiley-Blackwell.
69. Gunzburger, Y., Merrien-Soukatchoff, V. and Guglielmi, Y. (2005) Influence of daily surface temperature fluctuations on rock slope stability: case study of the Rochers de Valabres slope (France), International Journal of Rock Mechanics and Mining Sciences, 42: 331-349.
70. Hall, A. D. and Fagan, R. E. (1956) Definition of system, General System, 1: 18-28.
71. Hufschmidt, G. (2011) A comparative analysis of several vulnerability concepts, Natural Hazards, 58: 621-643.
72. Hufschmidt, G. and Glade, T. (2010) Vulnerability analysis in geomorphic risk assessment. In: Irasema A. A. and Andrew, S. (eds.) Geomorphological Hazards and Disaster Prevention, New York: Cambridge University Press, 233-244.
73. Hufschmidt, G., Crozier, M. and Glade, T. (2005) Evolution of natural risk: research framework and perspectives, Natural Hazards and Earth System Sciences, 5: 375-387.
74. Huggett, R. (1980) Systems analysis in geography, Oxford: Clarendon Press.
75. Hung, C. Y. and Lin, H. M. (2013) The Study of Regional Disaster System for Hai-Duan Township in Taitung of Taiwan, AAG Annual Meeting.
76. Ibsen, M. L. and Brunsden, D. (1996) The nature, use and problems of historical archives for the temporal occurrence of landslides, with specific reference to the south coast of Britain, Ventnor, Isle of Wight, Geomorphology, 15: 241-258.
77. IPCC (2007) Climate change 2007 : the physical science basis : contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge University Press.
78. Jaiswal, P., Van Westen, C. J. and Jetten, V. (2010) Quantitative landslide hazard assessment along a transportation corridor in southern India, Engineering Geology, 116: 236-250.
79. Johnson, A. M. and Rodine, J. R. (1984) Debris flow, In: Prior, D. B. (eds.) Slope Instability, New York: Wiley, ch.8.
80. Kappes, M. S., Keiler, M., Elverfeldt, K. and Glade, T. (2012) Challenges of analyzing multi-hazard risk: a review, Natural Hazards, 64: 1925-1958.
81. Kates, R. W. (1971) Natural hazard in human ecological perspective: hypotheses and models, Economic Geography, 47(3): 438-451.
82. Krasovskaia, I., Gottschalk, L., Skiple Ibrekk, A. and Berg, H. (2007) Perception of Flood Hazard in Countries of the North Sea Region of Europe. Nordic Hydrology 38(4-5): 387-399.
83. Künzler, M., Huggel, C. and Ramírez, J. M. (2012) A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia, Natural Hazards, 64: 767-796.
84. Lazzari, M., Geraldi, E., Lapenna, V. and Loperte, A. (2006) Natural hazards vs human impact:an integrated methodological approach in geomorphological risk assessment on the Tursi historical site, Southern Italy, Landslides, 3: 275-287.
85. Lee, S., Ryu, J. H. and Kim, L. S. (2007) Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea, Landslides, 4: 327-338.
86. Lindell, M. K. and Perry, R. W. (2000) Household adjustment to earthquake hazard: A review of research, Environment and Behavior, 32(4): 461-501.
87. Martino, S. and Mugnozza, G. S. (2005) The role of the seismic trigger in the Calitri landslide (Italy): historical reconstruction and dynamic analysis, Soil Dynamics and Earthquake Engineering, 25: 933-950.
88. McLaughlin, S., McKenna, J., and Cooper, J. A. G. (2002) Socio-economic data in coastal vulnerability indices: constraints and opportunities, Journal of Coastal Research, SI36: 487-497.
89. Mileti, D. S. (1999) Disasters by Design: a reassessment of natural hazards in the United States, Washington: Joseph Henry Press.
90. Msilimba, G. G. (2010) The socioeconomic and environmental effects of the 2003 landslides in the Rumphi and Ntcheu Districts (Malawi), Natural Hazards, 53: 347-360.
91. Mustafa, D. (2002) Linking Access and Vulnerability: Perceptions of Irrigation and Flood Management in Pakistan, Professional Geographer, 54(1): 94-105.
92. Nefeslioglu, H. A., Duman, T. Y. and Durmaz, S. (2008) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey), Geomorphology, 94: 401-418.
93. Nguyen, H. T., Wiatr, T., Fernández-Steeger, T. M., Reicherter, K., Rodrigues, D. M. M. and Azzam, R. (2013) Landslide hazard and cascading effects following the extreme rainfall event on Madeira Island (February 2010), Natural Hazards, 65: 635-652.
94. O’Brien, K., Sygna, L. and Haugen, J. E. (2004) Vulnerable or resilient ? A multi-scale assessment of climate impacts and vulnerability in Norway. Climatic Change, 64: 193-225.
95. Parise, M. and Wasowski, J. (1999) Landslide activity maps for landslide hazard evaluation: Three case studies from southern Italy, Natural Hazards, 20: 159-183.
96. Park, N. W. (2011) Application of Dempster-Shafer theory of evidence to GIS-based landslide susceptibility analysis, Environmental Earth Sciences, 62: 367-376.
97. Park, S., Choi, C., Kim, B. and Kim, J. (2013) Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea, Environmental Earth Sciences, 68: 1443-1464
98. Patt, G., Schröter, D., Klein, R. J. T. and de la Vega-Leinert, A. C. (2009) Assessing vulnerability to global environmental change, London: Earthscan.
99. Pattison, W. D. (1990) The Four Traditions of Geography, Journal of Geography, 89(5): 202-206.
100. Pelling, M. and Uitto, J. I. (2001) Small island developing states: natural disaster vulnerability and global change, Environmental Hazards, 3: 49-62.
101. Petrucci, O., Polemio, M. and Pasqua, A. A. (2009) Analysis of Damaging Hydrogeological Events: The Case of the Calabria Region (Southern Italy), Environmental Management, 43: 483-495.
102. Pistocchi, A. and Notarnicola, C. (2013) Data-driven mapping of avalanche release areas: a case study in South Tyrol, Italy, Natural Hazards, 65: 1313-1330.
103. Pourghasemi, H. R., Jirandeh, A. G., Pradhan, B., Xu, C. and Gokceoglu, C. (2013) Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran, Journal of Earth System Science, 122(2): 349-369.
104. Pradhan, B. (2010) Landslide Susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches, Journal of the Indian Society of Remote Sensing, 38: 301-320.
105. Quan, H. C. and Lee, B. G. (2012) GIS-Based Landslide Susceptibility Mapping Using Analytic Hierarchy Process and Artificial Neural Network in Jeju (Korea), KSCE Journal of Civil Engineering, 16(7): 1258-1266.
106. Reid, L. M. and Page, M. J. (2002) Magnitude and frequency of landsliding in a large New Zealand catchment, Geomorphology, 49: 71-88.
107. Remondo, J., González, D. A., Díaz de Terán J. R., Cendrero, A., Fabbri, A. and Chung, C. J. F. (2003) Validation of landslide susceptibility maps; examples and applications from a case study in Northern Spain, Natural Hazards, 30: 437-449.
108. Remondo, J., Soto, J., González, D. A., Díaz de Terán J. R. and Cendrero, A. (2005) Human impact on geomorphic processes and hazards in mountain areas in northern Spain, Geomorphology, 66: 69-84.
109. Romieu, E., Welle, E., Schneiderbauer, T., Pelling, M. and Vinchon, C. (2010) Vulnerability assessment within climate change and natural hazard contexts: revealing gaps and synergies through coastal applications, Sustainability Science, 5: 159-170.
110. Sabatakakis, N., Koukis, G., Vassiliades, E. and Lainas, S. (2013) Landslide susceptibility zonation in Greece, Natural Hazards, 65: 523-543.
111. Sarkar, S., Kanungo, D. P., Patra, A. K. and Kumar, P. (2008) GIS Based Spatial Data Analysis for Landslide Susceptibility Mapping, Journal of Mountain Science, 5(1): 52-62.
112. Saez, J. L., Corona, C., Stoffel, M. and Berger, F. (2013) Climate change increases frequency of shallow spring landslides in the French Alps, Geology, 41(5): 619-622.
113. Schicker, R. and Moon, V. (2012) Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale, Geomorphology, 161-162: 40-57.
114. Schumm, S. A. (1977) The fluvial system, New York: Wiley.
115. Shirzadi, A., Saro, L. Hyun Joo, O. and Chapi, K. (2012) A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran, Natural Hazards, 64: 1639-1656.
116. Simon, H. A. (1962) The architecture of complexity, Proceedings of The American Philosophical Society, 106: 467-482.
117. Slaymaker, O. and Spencer, T. (1998) Physical geography and global environment change, Harlow: Longman press.
118. Slovic, P. (2000) Perception of Risk, In: Löfstedt, R. E. (eds.) The perception of risk, London: Earthscan, 220-315.
119. Smit, B. and Wandel J. (2006) Adaptation, adaptive capacity and vulnerability, Global Environmental Change, 16:282-292.
120. Smith, K. (1996) Environmental hazards: assessing risk and reducing disaster (2nd ed.), London: Routledge.
121. Smith, K. (2001) Environmental hazards: assessing risk and reducing disaster (3rd ed.), London: Routledge.
122. Smith, K. (2004) Environmental hazards: assessing risk and reducing disaster (4th ed.), London: Routledge.
123. Stefanovic, I. L. (2003) The Contribution of Philosophy to Hazards Assessment and Decision Making, Natural Hazards, 28: 229-247.
124. Strahler, A. N. (1950) Equilibrium theory of erosional slopes approached by frequency distribution analysis, American Journal of Science, 248: 673-696.
125. Süzen, M. L. and Doyuran, V. (2004a) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey, Engineering Geology, 71:303-321.
126. Süzen, M. L. and Doyuran, V. (2004b) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate, Environmental Geology, 45(5):665-679.
127. Terlien, M. T. J. (1998) The determination of statistical and deterministic hydrological landslide-triggering thresholds, Environmental Geology, 5: 124-130.
128. Thanapackiam, P., Khairulmaini, O. S. and Fauza, A. G. (2012) Vulnerability and adaptive capacities to slope failure threat: a study of the Klang Valley Region, Natural Hazards, 62: 805-826.
129. Thomas, D. S. G. and Goudie, A. (2000) The dictionary of physical geography (3th), Malden Ma: Blackwell press.
130. Tobin, G. A. and Montz, B. E. (1997) Natural Hazards: Explanation and Integration, New York: Guilford Press.
131. Tokgöz, N. (2010) Case study of the Agacli landslide-gully complex during post-coal-mining reclamation and afforestation, Environmental Earth Sciences, 59: 1559-1567.
132. Tunusluoglu, M. C., Gokceoglu, C., Nefeslioglu, H. A. and Sonmez, H. (2008) Extraction of potential debris source areas by logistic regression technique: a case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey), Environmental Geology, 54: 9-22.
133. Turner II, B. L., Kasperson, R.E., Matson, P.A. et al., (2003) A framework for vulnerability analysis in sustainability science, Proceedings of the National Academy of Sciences of the United States of America, 100(14): 8074-8079.
134. Turner, B. A. (1976) The development of disasters: a sequence model for the analysis of origin of diasters, Sociological Review, 24: 753-774.
135. UNDRO (1982) Natural disasters and vulnerability analysis, Geneva: Office of the United Nations Diaster Relief Co-ordinator.
136. United National Development Programme (UNDP) (2007) Human Development Report. New York: Palgrave Macmillan press.
137. Vafeidis, A.T., Nicholls, R.J., Boot, G., Cox, J., Grashoff, P.S. et al., (2008) A new global coastal database for impact and vulnerability analysis to sea-level rise, Journal of Coastal Research, 24(4): 917–924.
138. Van Den Eeckhaut, M., Poesen, J., Vandekerckhove, L., Van Gils, M. and Van Rompaey, A. (2010) Human–environment interactions in residential areas susceptible to landsliding: the Flemish Ardennes case study, Area, 42(3): 339-358.
139. Van Den Eeckhaut, M., Vanwalleghem, T., Poesen, J., Govers, G., Verstraeten, G. and Vandekerckhove, L. (2006) Prediction of landslide susceptibility using rare events logistic regression: A case-study in the Flemish Ardennes (Belgium), Geomorphology, 76: 392-410.
140. Varnes, D. J. (1984) Landslides hazard zonation: a review of principles and practice, Paris: UNESCO.
141. Varnes, D.J. (1978) Slope movements and types and processes, In Landslide: Analysis and control, Transportation Research Board, Special Report 176, Washington: National Academy of Sciences, 11-13.
142. Vincent, K. (2007) Uncertainty in adaptive capacity and the importance of scale, Global Environmental Change, 17:12-24
143. Wang, H. B. and Sassa, K. (2005) Comparative evaluation of landslide susceptibility in Minamata area, Japan, Environment Geology, 47: 956-966.
144. White, G. F. (1945) Human Adjustment to Floods: a geographical approach to the flood problem in the United states, Department of geography research no. 29, Chicago: University of Chicago.
145. White, G. F. (1974) Nature Hazards Research: Concepts, Methods and Policy Implications, In: White G. F. (eds.) Natural Hazard: Local, National Global, New York: Oxford University Press.
146. Wilhelmi, O. V. and Morss, R. E. (2013) Integrated analysis of societal vulnerability in an extreme precipitation event: A Fort Collins case study, Environmental Science & Policy, 26: 49-62.
147. Wilk, J., Andersson, L. Warburton, M. (2013) Adaptation to climate change and other stressors among commercial and small-scale South African farmers, Regional Environmenal Change, 13(2): 273-286.
148. Wisner, B., Blaikie, P., Cannon, T. and Davis, I. (2004) At Risk – Natural hazards, people’s vulnerability and disasters, London: Routledge.
149. Yao, X., Tham, L. G. and Dai, E. C. (2008) Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China, Geomorphology, 101: 572-582.
150. Yilmaz, I. (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine, Environmental Earth Sciences, 61: 821-836.
151. Yilmaz, I., Marschalko, M. and Bednarik, M. (2013) An assessment on the use of bivariate, multivariate and soft computing techniques for collapse susceptibility in GIS environ, Journal of Earth System Science, 122(2): 371-388.
152. Yoon, D. K. (2012) Assessment of social vulnerability to natural disasters: a comparative study, Natural Hazards, 63: 823-843.
153. Winter, M. G. and Bromhead, E. N. (2012) Landslide risk: some issues that determine societal acceptance, Natural Hazards, 62:169-187.
154. Záruba, Q. and Mencl, V. (1982) Landslides and their control, New York: Elsevier Scientific press.
網路資料
1. 臺東縣統計要覽,http://www.taitung.gov.tw/statistics/,2011/1瀏覽。
2. 臺東縣海端鄉公所,http://www.haiduau.gov.tw/culture.php,2011/1瀏覽。
3. 臺東縣金峰鄉公所,http://www.ttjfng.gov.tw/releaseRedirect.do?unitID=183,2011/1瀏覽。
4. 臺東縣大武鄉公所,http://www.dwuu.gov.tw/,2011/1瀏覽。
5. 聯合知識庫,http://udndata.com/,2011/1瀏覽。
6. 中央氣象局,http://www.cwb.gov.tw/V7/index_home.htm,2011/1瀏覽。