簡易檢索 / 詳目顯示

研究生: 林益儒
Yi-Ju Lin
論文名稱: 類Hindmarsh-Rose模型之分岔與動態行為的研究
Bifurcations and Dynamical Behaviors for a Hindmarsh Rose Type model
指導教授: 陳賢修
Chen, Shyan-Shiou
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 26
中文關鍵詞: 類Hindmarsh-Rose模型saddle-node分岔Andronov-Hopf分岔動態系統
英文關鍵詞: Hindmarsh-Rose type model, saddle-node bifurcation, Andronov-Hopf bifurcation, dynamical systems
論文種類: 學術論文
相關次數: 點閱:165下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要的目的是探討Hindmarsh-Rose Type model的分岔研究。該模型是Hodgkin-Huxley(HH)的神經元模型的簡化型。為了簡化HH模型並保留神經元活動的基本特性,FitzHugh-Nagumo以及Hindmarsh–Rose(HR)等人將該模型簡化成多項式的形態,以利於研究單一神經元的活動。我們主要的工作是透過研究HR模型的saddle-node (SN) bifurcation及Andronov-Hopf (AH) bifurcation以了解類型一神經元及類型二神經元的活性化。我們主要的結果是確定SN及AH發生的條件。本研究成果有助於了解單一神經元動態行為及其基本特性。

    In the paper, we aim to study some bifurcations and dynamical behaviors of a two dimensional Hindmarsh-Rose type (HRT) model, which is a simplified version of Hodgkin-Huxley neuron mode. Hodgkin suggested that there exist two classes of neurons: one is Class 1 and the other is Class 2. In dynamical systems, these two classes also called Type 1 and Type 2, respectively. We mathematically confirm the occurrences of both saddle-node and Andronov-Hopf bifurcations of the HRT model. Physiologically, the first bifurcation is concerned with Class 1 excitability and spiking, and the second bifurcation is related to Class 2 excitability and spiking. Therefore, the research could help us to understand the dynamical behaviors of a single neuron and its basic characteristics.

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . 3 2 Definitions and Bifurcations . . . . . . . . . . . . . . 4 2.1 Dynamical System . . . . . . . . . . . . . . . . . . . 4 2.2 Saddle-Node Bifurcation . . . . . . . . . . . . . . . .6 2.3 Hopf Bifurcation . . . . . . . . . . . . . . . . . . . 8 2.4 Cusp Bifurcation . . . . . . . . . . . . . . . . . . . 9 2.5 Bogdanov-Takens Bifurcation . . . . . . . . . . . . . 10 3 Main Theorems . . . . . . . . . . . . . . . . . . . . . 11 3.1 Saddle-Node Bifurcation Theorem for HR type model . . 11 3.2 Andronov-Hopf Bifurcation Theorem for HR type model . 14 4 Discussion . . . . . . . . . . . . . . . . . . . . . .15 References . . . . . . . . . . . . . . . . . . . . . . . .26

    [1] E. M. Izhikevich. Neural excitablity, spiking and bursting. Int. J. Bifurcation and
    Chaos, 10:1171–1266, 2000.
    [2] V. B. Mountcastle. Modality and topographic properties of single neurons of cat’s
    somatic sensory cortex. J Neurophysiol, 20:408–434, 1957.
    [3] V. B. Mountcastle. The columnar organization of the neocortex. Brain, 120:701–
    722, 1997.
    [4] A.L. Hodgkin. The local electric change associated withrepetitive action in a
    non-medullated axon. J.Physiol, 107:165–181, 1948.
    [5] A.L. Hodgkin and A.F. Huxley. A qualitative description of membrane current
    and its application to conduction and excitation in nerve. J.Physiol, 117:500–544,
    1952.
    [6] R. FitzHugh. Impulses and physiological states in theoretical models of nerve
    membrane. Biophys. J., 1:445–466, 1961.
    [7] J. S. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line
    simulating nerve axon. Proc. IRE, 50:2061–2071, 1962.
    [8] Hindmarsh J.L. and Rose R.M. A model of the nerve impulse using two first-order
    differential equations. Nature, 296:162–164, 1982.
    [9] S. Tsuji, T. Ueta, H. Kawakami, H. Fujii, and K. Aihara. Bifurcation in two-
    dimensional hindmarsh-rose type model. I.J.B.C, 17(3):985–998, 2007.
    [10] R.C. Robinson. An introduction to dynamical systems:Continuous and discrete.
    Pearson, 2004.
    [11] F. C. Hoppensteadt and E. M. Izhikevich. Weakly connected neural networks.
    Springer, 1997.
    [12] S. Wiggins.
    Introduction to applied nonlinear dynamical systems and chaos.
    Springer, 1990.
    [13] Guckenheimer J. and Holmes P. Nonlinear oscillations dynamical systems, and
    bifurcations of vector fields. Springer, 1983.

    QR CODE