簡易檢索 / 詳目顯示

研究生: 李嘉宜
Jai-Yi Li
論文名稱: 大鼠腦電波及心臟自主神經功能於運動過程中之變化:老化及高血壓之影響
Changes in Electroencephalogram and Cardiac Autonomic Function during Treadmill Exercise in Rats: Effect of Aging and Hypertension
指導教授: 謝伸裕
Hsieh, Shen-Yu
郭博昭
Kuo, Bo-Jau
楊靜修
Yang, Ching-Hsiu
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 68
中文關鍵詞: 跑步機運動心率變異性老化高血壓
英文關鍵詞: treadmill exercise, heart rate variability, aging, hypertension
論文種類: 學術論文
相關次數: 點閱:226下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 若能偵測運動過程中之生理訊號,將有許多重要應用,故運動過程中生理訊號向來是許多研究者致力研究的議題,而往往難以排除因運動造成的雜訊干擾。長期運動會調節心臟自主神經系統以及其他生理訊號,更可以降低血壓以及減緩老化。若干擾自主神經系統活性後,會進而影響大腦功能,本論文成功建立記錄大鼠運動過程中之腦波及心電訊號之模式,可藉此了解運動過程中大腦皮質與心臟間之互動。目的:利用大鼠生理訊息同時紀錄及分析系統,探討運動過程中大腦與心臟自主神經之間的互動,並嘗試觀察高血壓以及老化是否有其特異表現。方法:以8及60週齡Wistar-Kyoto (WKY) 及8週齡 spontanouesly hypertensive rat (SHR) 為實驗對象,植入頭電極7天後,對大鼠進行跑步機運動,並同時紀錄其腦波和心電訊號。統計方法以雙因子變異數分析來檢定差異性,並以 Fisher’s 法進行事後比較,統計水準至少達p<0.05,數據以mean ± SEM 表示。結果:各組相比,大鼠進行運動時腦波平均功率 (F=22.412)、alpha (F=113.260)、 beta (F=34.732)、delta (F=23.049) 及 theta波 (F=22.521),各頻帶腦波平均功率百分比均達顯著差異 (p<0.05) ;心電訊號部份,心跳RR間距 (F=45.721) 以及心率變異性中HF (F=56.503)、LF (F=139.613) 及LF/HF (F=56.500) 均達顯著差異(p<0.05),進行事後比較。發現年老使運動過程中的腦波變化較不明顯但心臟自主神經功能明顯降低;高血壓大鼠於運動過程中theta波顯著低於正常血壓大鼠。結論:大鼠於運動過程中,處於較專注且警覺的狀態,且睡意下降,其心臟自主神經功能亦在運動過程中下降。於開始運動進行時,大腦皮質活性增加快於心臟反應,而年老大鼠於運動狀態下其自主神經功能明顯衰退,高血壓大鼠於運動過程中theta波有其特異表現,進一步求證後可作為評估罹患高血壓之指標。

    There will be numerous important applications to record physiological signals during strenuous exercise. Many researchers aim for that but it’s still difficult to exclude exercise-induced interference. Long-term exercise will regulate cardiac autonomic system and other physiological signals, reduce blood pressure and retard aging. Further, it will affect cerebral function after interrupting autonomic system activity. This discourse successfully established animal model of recording electroencephalogram and electrocardiogram during exercise. The developed technique will offer a way to study the interaction of cerebral cortex and heart during exercise in rats. Purpose: With continuous recording and analyzing the system of rats, we could explore the interaction of brain and cardiac autonomic system during exercise; also, we could attempt to observe distinction of hypertension and aging. Methods: All experiments were carried out on 8 and 60 weeks Wistar-Kyoto and spontaneously hypertension rats. After seven days from the electrodes and electrocardiogram were implanted, continuous electroencephalogram (EEG) and electrocardiogram (ECG) were recorded during treadmill exercise in rats. Effects of the exercise on the physiological parameters were assessed using two-way analysis of variance (ANOVA) and t-test with repeated measures. When indicated by a significant F statistic, regional differences were isolated using post hoc comparisons by the Fisher’s least-significant difference test. Statistical significance was assumed for p < 0.05. Values are expressed as means  SEM. Results: Compared with each groups, treadmill exercise resulted significant difference in mean power frequency (F=22.412), alpha (F=113.260), beta (F=34.732), delta (F=23.049) and theta power (F=22.521) of the EEG, and R-R interval (F=45.721), HF (F=56.503), LF (F=139.613) and LF/HF (F=56.500) of EEG. Such changes quickly reversed when the treadmill exercise was stopped. Conclusion: Rats were more attention and alertness and lower sleepiness and cardiac autonomic function during exercise. At beginning of exercise, the increase of cortical activity was faster than heart response. Autonomic function of elderly rat declined appreciably during exercise. There was outstanding expression of theta power during exercise in hypertension rats. After further attestation it may be the predictor of affecting hypertension.

    目次 致謝-------------------------------------------------------i 中文摘要---------------------------------------------------ii 英文摘要--------------------------------------------------iii 目次------------------------------------------------------iv 表次------------------------------------------------------vi 圖次-----------------------------------------------------vii 第壹章 緒論-------------------=----------------------------1 第一節、研究背景---------------------------------------------1 第二節、研究目的---------------------------------------------4 第三節、研究假設---------------------------------------------5 第四節、研究限制---------------------------------------------6 第五節、名詞解釋---------------------------------------------6 第貮章 相關文獻探討----------------------------------------10 第一節、運動對大腦的影響-------------------------------------10 第二節、運動狀態之腦波研究-----------------------------------11 第三節、運動對心臟功能的影響---------------------------------11 第四節、運動中的心臟自主神經功能------------------------------12 第五節、有氧運動中心臟自主神經系統的適應-----------------------13 第六節、年齡及日夜差別對心率變異性的影響-----------------------13 第七節、身體活動對心率變異性的影響----------------------------13 第八節、運動訓練期間的心率變異性變化--------------------------14 第九節、高血壓對腦循環動態的影響------------------------------15 第十節、高血壓與自主神經功能---------------------------------16 第十一節、運動對血壓的影響-----------------------------------17 第十二節、老化對腦循環動態及心血管自主神經功能的影響------------18 第參章 研究方法與材料 -------------------------------------19 第一節、實驗動物--------------------------------------------19 第二節、動物運動模式----------------------------------------19 第三節、腦波及心電電極植入手術-------------------------------20 第四節、實驗流程--------------------------------------------21 第五節、資料收集--------------------------------------------22 第六節、腦電波分析------------------------------------------23 第七節、心率變異性分析--------------------------------------23 第八節、統計分析--------------------------------------------25 第肆章 結果-----------------------------------------------26 第一節、年齡與高血壓對運動中大鼠各生理訊號之影響----------------26 第二節、成年正常血壓大鼠於運動前,運動中以及運動後腦波與心率變異性之變化------------------------------------------------------27 第三節、老年與成年正常血壓大鼠於運動前,運動中以及運動後腦波與心率變異性變化之差別---------------------------------------------33 第四節、成年高血壓大鼠與正常血壓大鼠於運動前,運動中以及運動後腦波與心率變異性變化之差別----------------------------------------40 第伍章 討論與結論------------------------------------------47 第一節、成年正常血壓大鼠於運動前,運動中以及運動後腦波與心臟自主神經功能之變化-------------------------------------------------47 第二節、老年與成年正常血壓大鼠於運動前,運動中以及運動後腦波與心臟自主神經功能變化之差別----------------------------------------49 第三節、成年高血壓大鼠與正常血壓大鼠於運動前,運動中以及運動後腦波與心臟自主神經功能變化之差別-----------------------------------50 第四節、結論-----------------------------------------------51 引用文獻---------------------------------------------------53 個人小傳---------------------------------------------------61 表次 表一、各組間及運動狀態下各生理數值之交互作用-------------------26 表二、各生理數值進行獨立樣本雙因子變異數分析之主要效果----------27 圖次 圖一、動物腦波電極植入位置-----------------------------------21 圖二、實驗流程圖--------------------------------------------21 圖三、連接管線固定於大鼠頭電極插座----------------------------22 圖四、成年正常血壓大鼠於運動前,運動中及運動後腦波與心率變異性之變化代表性原始資料---------------------------------------------28 圖五、成年正常血壓大鼠於運動前,運動中及運動後腦電波平均功率及各頻域功率之變化-------------------------------------------------30 圖六、成年正常血壓大鼠於運動前,運動中及運動後腦電波各頻域所佔百分比之變化----------------------------------------------------31 圖七、成年正常血壓大鼠運動前,運動中以及運動後心率變異性各參數之變化--------------------------------------------------------32 圖八、老年與成年正常血壓大鼠於運動前,運動中及運動後腦波與心率變異性之變化代表性原始資料----------------------------------------34 圖九、老年與成年正常血壓大鼠於運動前,運動中及運動後腦電波平均功率及各頻域功率之變化--------------------------------------------36 圖十、老年與成年正常血壓大鼠於運動前,運動中及運動後腦電波各頻域所佔百分比之變化-----------------------------------------------37 圖十一、老年與成年正常血壓大鼠於運動前,運動中及運動後心率變異性各參數之變化---------------------------------------------------39 圖十二、成年高血壓大鼠與正常血壓大鼠於運動前,運動中及運動後腦波與心率變異性之變化代表性原始資料---------------------------------41 圖十三、成年大鼠高血壓與正常血壓大鼠於運動前,運動中及運動後腦電波平均功率及各頻域功率之變化-------------------------------------43 圖十四、成年高血壓大鼠與正常血壓大鼠於運動前,運動中及運動後之腦電波各頻域所佔百分比之變化--------------------------------------44 圖十五、成年高血壓與正常血壓大鼠大鼠運動前,運動中及運動後心率變異性各參數之變化-----------------------------------------------46

    Adrian, E. D. (1942). Olfactory reactions in the brain of the hedgehog. The Journal of Physiology, 100(4), 459-473.
    Aubert, A. E., Beckers, F., & Ramaekers, D. (2001). Short-term heart rate variability in young athletes. Journal of Cardiology, 37 Suppl 1, 85-88.
    Blumenthal, J. A., Babyak, M. A., Moore, K. A., Craighead, W. E., Herman, S., Khatri, P., et al. (1999). Effects of exercise training on older patients with major depression. Archives of Internal Medicine, 159(19), 2349-2356.
    Casadei, B., Cochrane, S., Johnston, J., Conway, J., & Sleight, P. (1995). Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans. Acta Physiologica Scandinavica, 153(2), 125-131.
    Chandler, M. P., & DiCarlo, S. E. (1998). Acute exercise and gender alter cardiac autonomic tonus differently in hypertensive and normotensive rats. The Journal of Physiology, 274(2 Pt 2), R510-516.
    Chang, A. Y. W., Kuo, T. B. J., & Chan, S. H. H. (1994). Power spectral analysis of electroencephalographic desynchronization induced by cocaine in the rat. Neuroscience Letters, 170(1), 175-178.
    Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological Science, 14(2), 125-130.
    Collins, H. L., & DiCarlo, S. E. (1993). Attenuation of postexertional hypotension by cardiac afferent blockade. The American Journal of Physiology, 265(4 Pt 2), H1179-1183.
    Davy, K. P., DeSouza, C. A., Jones, P. P., & Seals, D. R. (1998). Elevated heart rate variability in physically active young and older adult women. Clinical Science, 94(6), 579-584.
    Driver, H. S., & Taylor, S. R. (2000). Exercise and sleep. Sleep Medicine Reviews, 4(4), 387-402.
    Dunn, A. L., Trivedi, M. H., Kampert, J. B., Clark, C. G., & Chambliss, H. O. (2005). Exercise treatment for depression: efficacy and dose response. American Journal of Preventive Medicine, 28(1), 1-8.
    Eames, P. J., Blake, M. J., Panerai, R. B., & Potter, J. F. (2003). Cerebral autoregulation indices are unimpaired by hypertension in middle aged and older people. American Journal of Hypertension, 16(9 Pt 1), 746-753.
    Ekblom, B., Kilbom, A., & Soltysiak, J. (1973). Physical training, bradycardia, and autonomic nervous system. Scandinavian Journal of Clinical and Laboratory Investigation, 32(3), 251-256.
    Evenwel, R., & Struyker-Boudier, H. (1979). Effect of physical training on the development of hypertension in the spontaneously hypertensive rat. Pflügers Archiv, 381(1), 19-24.
    Fell, J., Klaver, P., Elfadil, H., Schaller, C., Elger, C. E., & Fernandez, G. (2003). Rhinal-hippocampal theta coherence during declarative memory formation: interaction with gamma synchronization? The European Journal of Neuroscience, 17(5), 1082-1088.
    Finley, J. P., & Nugent, S. T. (1995). Heart rate variability in infants, children and young adults. Journal of the Autonomic Nervous System, 51(2), 103-108.
    Fluckiger, L., Boivin, J. M., Quilliot, D., Jeandel, C., & Zannad, F. (1999). Differential effects of aging on heart rate variability and blood pressure variability. The journals of gerontology. Series A, Biological Sciences and Medical Sciences, 54(5), B219-224.
    Fordyce, D. E., & Farrar, R. P. (1991). Physical activity effects on hippocampal and parietal cortical cholinergic function and spatial learning in F344 rats. Behavioural Brain Research, 43(2), 115-123.
    Furlan, R., Piazza, S., Dell'Orto, S., Gentile, E., Cerutti, S., Pagani, M., et al. (1993). Early and late effects of exercise and athletic training on neural mechanisms controlling heart rate. Cardiovascular Research, 27(3), 482-488.
    Hagberg, J. M., Goldberg, A. P., Lakatta, L., O'Connor, F. C., Becker, L. C., Lakatta, E. G., et al. (1998). Expanded blood volumes contribute to the increased cardiovascular performance of endurance-trained older men. Journal of Applied Physiology, 85(2), 484-489.
    Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Circulation, 93(5), 1043-1065.
    Hillman, C. H., Weiss, E. P., Hagberg, J. M., & Hatfield, B. D. (2002). The relationship of age and cardiovascular fitness to cognitive and motor processes. Psychophysiology, 39(3), 303-312.
    Hoffmann, P., Friberg, P., Ely, D., & Thoren, P. (1987). Effect of spontaneous running on blood pressure, heart rate and cardiac dimensions in developing and established spontaneous hypertension in rats. Acta Physiologica Scandinavica, 129(4), 535-542.
    Hon, E. H., & Lee, S. T. (1963). Electronic Evaluation of the Fetal Heart Rate. Viii. Patterns Preceding Fetal Death, Further Observations. American Journal of Obstetrics and Gynecology, 87, 814-826.
    Huikuri, H. V., Makikallio, T., Airaksinen, K. E., Mitrani, R., Castellanos, A., & Myerburg, R. J. (1999). Measurement of heart rate variability: a clinical tool or a research toy? Journal of the American College of Cardiology , 34(7), 1878-1883.
    Huston, T. P., Puffer, J. C., & Rodney, W. M. (1985). The athletic heart syndrome. The New England Jjournal of Medicine, 313(1), 24-32.
    Jokinen, V., Tapanainen, J. M., Seppanen, T., & Huikuri, H. V. (2003). Temporal changes and prognostic significance of measures of heart rate dynamics after acute myocardial infarction in the beta-blocking era. The American Journal of Cardiology, 92(8), 907-912.
    Julius, S., & Johnson, E. H. (1985). Stress, autonomic hyperactivity and essential hypertension: an enigma. Journal of Hypertension, 3(4), S11-17.
    Karege, F., Perret, G., Bondolfi, G., Schwald, M., Bertschy, G., & Aubry, J. M. (2002). Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Research, 109(2), 143-148.
    Kempermann, G., van Praag, H., & Gage, F. H. (2000). Activity-dependent regulation of neuronal plasticity and self repair. Progress in Brain Research, 127, 35-48.
    Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., et al. (1999). Ageing, fitness and neurocognitive function. Nature, 400(6743), 418-419.
    Kuo, T. B. J., Lin, T., Yang, C. C. H., Li, C. L., Chen, C. F., & Chou, P. (1999). Effect of aging on gender differences in neural control of heart rate. The Journal of Physiology, 277(6 Pt 2), H2233-2239.
    Kuo, T. B. J., & Yang, C. C. H. (2000). Altered frequency characteristic of central vasomotor control in SHR. American Journal of Physiology. Heart and Circulatory Physiology, 278(1), H201-207.
    Kuo, T. B. J., & Yang, C. C. H. (2004). Scatterplot analysis of EEG slow-wave magnitude and heart rate variability: an integrative exploration of cerebral cortical and autonomic functions. Sleep, 27(4), 648-656.
    Kuo, T. B. J., & Yang, C. C. H. (2005). Sleep-related changes in cardiovascular neural regulation in spontaneously hypertensive rats. Circulation, 112(6), 849-854.
    Laurin, D., Verreault, R., Lindsay, J., MacPherson, K., & Rockwood, K. (2001). Physical activity and risk of cognitive impairment and dementia in elderly persons. Archives of neurology, 58(3), 498-504.
    Lipsitz, L. A., Mukai, S., Hamner, J., Gagnon, M., & Babikian, V. (2000). Dynamic regulation of middle cerebral artery blood flow velocity in aging and hypertension. Stroke, 31(8), 1897-1903.
    Luoh, H. F., Kuo, T. B. J., Chan, S. H. H., & Pan, W. H. (1994). Power spectral analysis of electroencephalographic desynchronization induced by cocaine in rats: correlation with microdialysis evaluation of dopaminergic neurotransmission at the medial prefrontal cortex. Synapse, 16(1), 29-35.
    MacMahon, S., Peto, R., Cutler, J., Collins, R., Sorlie, P., Neaton, J., et al. (1990). Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet, 335(8692), 765-774.
    McCloskey, D. P., Adamo, D. S., & Anderson, B. J. (2001). Exercise increases metabolic capacity in the motor cortex and striatum, but not in the hippocampus. Brain Research, 891(1-2), 168-175.
    Moore, R. L., & Palmer, B. M. (1999). Exercise training and cellular adaptations of normal and diseased hearts. Exercise and Sport Sciences Reviews, 27, 285-315.
    Munakata, M., Imai, Y., Takagi, H., Nakao, M., Yamamoto, M., & Abe, K. (1994). Altered frequency-dependent characteristics of the cardiac baroreflex in essential hypertension. Journal of the Autonomic Nervous System, 49(1), 33-45.
    Nobili, F., Rodriguez, G., Marenco, S., De Carli, F., Gambaro, M., Castello, C., et al. (1993). Regional cerebral blood flow in chronic hypertension. A correlative study. Stroke, 24(8), 1148-1153.
    Nolan, J., Flapan, A. D., Goodfield, N. E., Prescott, R. J., Bloomfield, P., Neilson, J. M., et al. (1996). Measurement of parasympathetic activity from 24-hour ambulatory electrocardiograms and its reproducibility and sensitivity in normal subjects, patients with symptomatic myocardial ischemia, and patients with diabetes mellitus. The American journal of cardiology, 77(2), 154-158.
    O'Leary, D. S., & Seamans, D. P. (1993). Effect of exercise on autonomic mechanisms of baroreflex control of heart rate. Journal of applied physiology, 75(5), 2251-2257.
    Overton, J. M., Tipton, C. M., Matthes, R. D., & Leininger, J. R. (1986). Voluntary exercise and its effects on young SHR and stroke-prone hypertensive rats. Journal of applied physiology, 61(1), 318-324.
    Ozdemr, O., Soylu, M., Demr, A. D., Geyk, B., Alyan, O., Chan, G., et al. (2004). Do collaterals affect heart rate variability in patients with acute myocardial infarction? Coronary Artery Disease, 15(7), 405-411.
    Peckova, M., Fahrenbruch, C. E., Cobb, L. A., & Hallstrom, A. P. (1998). Circadian variations in the occurrence of cardiac arrests: initial and repeat episodes. Circulation, 98(1), 31-39.
    Perini, R., Orizio, C., Baselli, G., Cerutti, S., & Veicsteinas, A. (1990). The influence of exercise intensity on the power spectrum of heart rate variability. European Journal of Applied Physiology and Occupational Physiology, 61(1-2), 143-148.
    Pigozzi, F., Alabiso, A., Parisi, A., Di Salvo, V., Di Luigi, L., Spataro, A., et al. (2001). Effects of aerobic exercise training on 24 hr profile of heart rate variability in female athletes. The Journal of Sports Medicine and Physical Fitness, 41(1), 101-107.
    Rennie, K. L., Hemingway, H., Kumari, M., Brunner, E., Malik, M., & Marmot, M. (2003). Effects of moderate and vigorous physical activity on heart rate variability in a British study of civil servants. American Journal of Epidemiology, 158(2), 135-143.
    Robinson, B. F., Epstein, S. E., Beiser, G. D., & Braunwald, E. (1966). Control of heart rate by the autonomic nervous system. Studies in man on the interrelation between baroreceptor mechanisms and exercise. Circulation Research, 19(2), 400-411.
    Russo-Neustadt, A. A., Beard, R. C., Huang, Y. M., & Cotman, C. W. (2000). Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience, 101(2), 305-312.
    Sawka, M. N., Convertino, V. A., Eichner, E. R., Schnieder, S. M., & Young, A. J. (2000). Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Medicine and Science in Sports and Exercise, 32(2), 332-348.
    Silva, G. J., Brum, P. C., Negrao, C. E., & Krieger, E. M. (1997). Acute and chronic effects of exercise on baroreflexes in spontaneously hypertensive rats. Hypertension, 30(3 Pt 2), 714-719.
    Smith, M. A., Makino, S., Kvetnansky, R., & Post, R. M. (1995). Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. The Journal of Neuroscience, 15(3 Pt 1), 1768-1777.
    Sokolov, E. N. (1963). Higher nervous functions; the orienting reflex. Annual Review of Physiology, 25, 545-580.
    Spinelli, L., Petretta, M., Marciano, F., Testa, G., Rao, M. A., Volpe, M., et al. (1999). Cardiac autonomic responses to volume overload in normal subjects and in patients with dilated cardiomyopathy. The American Journal of Physiology, 277(4 Pt 2), H1361-1368.
    Stolarz, K., Staessen, J. A., Kuznetsova, T., Tikhonoff, V., State, D., Babeanu, S., et al. (2003). Host and environmental determinants of heart rate and heart rate variability in four European populations. Journal of Hypertension, 21(3), 525-535.
    Szydlik, P., Mariak, Z., Krejza, J., Swiercz, M., & Keller, A. (2000). Transcranial color Doppler estimation of blood flow parameters in respective basal cerebral arteries in healthy subjects. Neurologia i Neurochirurgia Polska, 34(3), 523-536.
    Taylor, J. A., Carr, D. L., Myers, C. W., & Eckberg, D. L. (1998). Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation, 98(6), 547-555.
    Taylor, J. A., Hayano, J., & Seals, D. R. (1995). Lesser vagal withdrawal during isometric exercise with age. Journal of Applied Physiology, 79(3), 805-811.
    Torsvall, L., & Akerstedt, T. (1987). Sleepiness on the job: continuously measured EEG changes in train drivers. Electroencephalography and Clinical Neurophysiology, 66(6), 502-511.
    Tulppo, M. P., Makikallio, T. H., Seppanen, T., Laukkanen, R. T., & Huikuri, H. V. (1998). Vagal modulation of heart rate during exercise: effects of age and physical fitness. The American Journal of Physiology, 274(2 Pt 2), H424-429.
    Ueno, L. M., Hamada, T., & Moritani, T. (2002). Cardiac autonomic nervous activities and cardiorespiratory fitness in older men. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 57(9), M605-610.
    Uusitalo, A. L., Laitinen, T., Vaisanen, S. B., Lansimies, E., & Rauramaa, R. (2002). Effects of endurance training on heart rate and blood pressure variability. Clinical Physiology and Functional Imaging, 22(3), 173-179.
    Uusitalo, A. L., Laitinen, T., Vaisanen, S. B., Lansimies, E., & Rauramaa, R. (2004). Physical training and heart rate and blood pressure variability: a 5-yr randomized trial. American Journal of Physiology. Heart and Circulatory Physiology, 286(5), H1821-1826.
    van Praag, H., Christie, B. R., Sejnowski, T. J., & Gage, F. H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 96(23), 13427-13431.
    Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2003). Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience, 122(3), 647-657.
    Veras-Silva, A. S., Mattos, K. C., Gava, N. S., Brum, P. C., Negrao, C. E., & Krieger, E. M. (1997). Low-intensity exercise training decreases cardiac output and hypertension in spontaneously hypertensive rats. The American Journal of Physiology, 273(6 Pt 2), H2627-2631.
    Victor, R. G., Seals, D. R., & Mark, A. L. (1987). Differential control of heart rate and sympathetic nerve activity during dynamic exercise. Insight from intraneural recordings in humans. The Journal of Clinical Investigation, 79(2), 508-516.
    Warren, J. H., Jaffe, R. S., Wraa, C. E., & Stebbins, C. L. (1997). Effect of autonomic blockade on power spectrum of heart rate variability during exercise. The American Journal of Physiology, 273(2 Pt 2), R495-502.
    Weise, J., Singh, M., & Yeudall, L. (1983). Occipital and parietal alpha power before, during and after exercise. Medicine and Science in Sports and Exercise, 15, 117.
    Williamson, J. W., Nobrega, A. C., McColl, R., Mathews, D., Winchester, P., Friberg, L., et al. (1997). Activation of the insular cortex during dynamic exercise in humans. The Journal of Physiology, 503 ( Pt 2), 277-283.
    Wolf, M. M., Varigos, G. A., Hunt, D., & Sloman, J. G. (1978). Sinus arrhythmia in acute myocardial infarction. The Medical Journal of Australia, 2(2), 52-53.
    Yang, C. C. H., Kuo, T. B. J., & Chan, S. H. (1996). Auto- and cross-spectral analysis of cardiovascular fluctuations during pentobarbital anesthesia in the rat. The American Journal of Physiology, 270(2 Pt 2), H575-582.
    Yang, C. C. H., Lai, C. W., Lai, H. Y., & Kuo, T. B. J. (2002). Relationship between electroencephalogram slow-wave magnitude and heart rate variability during sleep in humans. Neuroscience Letters, 329(2), 213-216.
    Yang, C. C. H., Shaw, F. Z., Lai, C. J., Lai, C. W., & Kuo, T. B. J. (2003). Relationship between electroencephalogram slow-wave magnitude and heart rate variability during sleep in rats. Neuroscience Leterst, 336(1), 21-24.
    Youngstedt, S. D., Dishman, R. K., Cureton, K. J., & Peacock, L. J. (1993). Does body temperature mediate anxiolytic effects of acute exercise? Journal of Applied Physiology, 74(2), 825-831.

    QR CODE