研究生: |
王維鈴 Wang Wei-Ling |
---|---|
論文名稱: |
酪胺酸酶之含氮硫三牙基二價銅錯合物的合成、結構及反應性之研究 Synthesis, Structure and Reactivity of Copper(II) Complexes with N2S Tridentate Ligands Relevant to Tyrosinase |
指導教授: |
李位仁
Lee, Way-Zen |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 酪胺酸酶 、二價銅錯合物 、含氮硫三牙基 |
英文關鍵詞: | Tyrosinase, Copper(II) Complexes, N2S Tridentate Ligands |
論文種類: | 學術論文 |
相關次數: | 點閱:157 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用兩個N2S三牙基的配位基,1,5-Bis(N-propylbenzimidazol-2-yl)-3-thiapentane (BBPrES)以及1,3-Bis(N-propylbenzimidazol-2-yl)-2-thiapropane (BBPrMS),並且利用這兩個N2S三牙基的配子與水合過氯酸銅反應,得到三個五配位正二價銅錯合物,包含[Cu(BBPrES)(CH3CN)2](ClO4)2 (1)、 [Cu(BBPrMS)(CH3CN)(η1-ClO4)](ClO4) (2)、[Cu(BBPrES)(CH3CN)- (tBuCN)](ClO4)2 (3)。將錯合物1和錯合物3分別與丁醇鉀反應,分別得到雙核正二價銅錯合物[Cu2(BBPrES)2(OMe)2](ClO4)2 (4)和[Cu2(BBPrMS)2(OH)2](ClO4)2 (5),五個錯合物皆得到X-光結構解析的晶體結構。我們以錯合物4及錯合物5在30ºC下催化2-萘酚的氧化反應,結果得到以dinol化合物的產物為主而不是binol的產物為主,產率分別為65%和74%。同時我們利用錯合物4及錯合物5在30ºC下催化3-羥基-2-萘甲酸甲酯進行氧化的反應,結果發現以雙苯環化合物的產物為主,產率皆為35%。
In this work, two N2S tridentate ligands, 1,5-Bis(N-propyl- benzimidazol-2-yl)-3-thiapentane (BBPrES) and 1,3-Bis- (N-propyl- benzimidazol-2-yl)-2-thiapropane (BBPrMS) were employed to synthesize a series of copper(II) complexes. Three five-coordinate mononuclear complexes of [Cu(BBPrES)(CH3CN)2](ClO4)2 (1), [Cu(BBPrMS)(CH3CN)(η1-ClO4)](ClO4) (2) and [Cu(BBPrES)(CH3CN)- (tBuCN)](ClO4)2 (3), were obtained by the reactions of copper(II) perchlorate hexahydrate with BBPrES or BBPrMS. Interestingly, the reactions of potassium tert-butoxide with complexes 1 and 2 in a methanol/tetrahydrofuran mixed solution lead gave a dicopper(II) to bis(μ-methanolato) complex (4), [Cu2(BBPrES)2(OMe)2](ClO4)2 and a dicopper(II) bis(μ-hydroxo) complex (5), [Cu2(BBPrMS)2(OH)2](ClO4)2. Complexes 1-5, were characterized by X-ray crystallography. Naphthalen-2-ol was selected to be the testing substrate for oxidative reaction catalyzed by complex 4 and 5 at 30ºC. The major product of the reaction was a dione compound 2'-hydroxy- 1,1'-binaphthalene-3,4-dione with a yield up to 65% and 74%, respectively. Only little product was observed. The product 2'-hydroxy- 1,1'-binaphthalene-3,4-dione was characterized by NMR and X-ray crystallography. Another substrate, we proceed methyl 3-hydroxy-2-naphthoate was also employed for oxidative reaction catalyzed by complex 4 and 5 at 30ºC. Confrastely, the major product of this substrate was binol in a yield of 35% for both reactions.
1. (a) J. Reedijk, Chem. Soc. Rev. 2001, 30, 376. (b) K. D. Karlin and Z.
Tyeklár, in Advances in Inorganic Biochemistry, eds. G. L. Eichhorn and L. G. Marzilli, Prentice Hall, New York, 1993, vol. 9., 123–172. (c) T. Punniyamurthy , L. Rout, Coord. Chem. Rev. 2008, 252 134.
2. E. I. Solomon, F. Tuczek, D. E. Root, and C. A. Brown, Chem. Rev. 1994, 94, 827.
3. S. J. Lippard, Principle Of Bioinorganic chemisrtry, University Science Books: Mill Vally, 1994, p 86 and p 237-242.
4. H. Nar, A. Messerschmidt, R. Huber, M. van de Kamp, G. W. Canters, J. Mol. Biol. 1991, 221, 765.
5. M. J. Zaworotko, Chem. Commun. 2001, 1-9.
6. B. F. Abrahams, B. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1991, 113, 3606.
7. E. I. Solomon, U. M. Sundaram, T. E. Machonkin, Chem. Rev. 1996, 96, 2563-2605.
8. (a) S. J. Lippard, J. M. Berg, Principles of Bioinorganic Chemistry 1994, 115. (b) N. Kitajima, Y.moro-oka, Chem. Rev. 1994, 94, 737.
9. W. B. Tolman, Acc. Chem. Res. 1997, 30. 227.
10. L. M. Mirica, X. Ottenwaelder, and T. D. P. Stack, Chem. Rev. 2004,
104, 1013.
11. M. Sendovski, M. Kanteev, v. S. Ben-Yosef, N. Adir, A. Fishman, J.
Mol. Biol. 2011, 405, 227-237.
12. E. I. Solomon, R. H. Holm, P. Kennepohl, Chem. Rev. 1996, 96,
2239-2314.
13. K. D. Karlin, M. S. Haka, R. W. Gruse, Y. Gultneh, J. Am. Chem.
Soc.1985, 107, 5828.
14. K. D. Karlin, N. Murthy, M. Mahroof-Tahir, J. Am. Chem. Soc.1993,
115, 2677.
15. K. D. Karlin, S. kaderli, A. D. Zuberbuhler, Acc. Chem. Res. 1997,
30, 139.
16. W. B. Tolman, E.A. Lewis, Chem. Rev.2004,104,1047.
17. S. Torelli, C. Belle, I. Gautier-Luneau, J. L. Pierre, E. Saint-Aman, J.
M. Latour, L. Le Pape, D. Luneau, Inorg. Chem. 2000, 39, 3526.
18. J. A. McCleverty, T. J. Maye, In Comprehensive Coordination
Chemistry II, 2003, Vol. 6, Chapter 8, pp 373.
19. K. F. Purcell, J. C. kotz, in Inorganic Chemistry, Saunders, W. B.
Philadelphia, 1977.
20. N. Ray, L. Hulett, R. Sheahan, B. J. Hathway, Inorg. Nucl. Chem.
Lett. 1978, 14, 305.
21. B. J. Hathway, G. Wilkinson, R. D. Gillard, J. McCleverty(eds), In
Comprehensive Coordination Chemistry, Vol. 5, Pergomon, Oxford, 1897; pp 594-774.
22. A. W. Addison, P. J. Burke, K. Henrick, T. N. Rao, E. Sinnic, Inorg.
Chem. 1983, 22, 3645.
23. J. V. Dagdigian, V. McKee, C. A. Reed, Inorg. Chem. 1982, 21,
1332.
24. M. Vaidyanathan, R. Balamurugan, U. Sivagnanam, A.
Palaniandavar, J. Chem. Soc. Dalton Trans. 2001, 3498.
25. J. V. Dagdigian, C. A. Reed, Inorg. Chem. 1979, 18, 2623.
26. 蔡秀緣,國立台灣師範大學化學研究所碩士論文,2002.
27. V. M. Miskowski, H. J. Schugar, J. A. Thich, R. J. Solomon, Am.
Che. Soc. 1976, 98, 8344.
28. S. Ole, N. Christian, T. Felix, Z. Anorg. Chem. 2009, 635
1123-1133.
29. E. I. Solomon, K. O. Hodgson, B. Hedman, T. D. P. Stack, J. Am.
Chem. Soc.2006, 128, 2654-2665.
30. S. Itoh, S. Fukuzumi, Acc. Chem. Res. 2007, 40, 592.
31. J. Stubbe , W. A. van der Donk, Chem. Rev. 1998, 98, 705.
32. Weinheim. Arch. Pharm. 1988, 321, 153-157
33. 江建緯,國立台灣師範大學化學研究所碩士論文,2008.