研究生: |
宗麟 Lin Tsung |
---|---|
論文名稱: |
鹽度和pH值對青鱂魚仔魚排氨機制的影響 Effect of salinity and pH on ammonia secretion in medaka larvae (Oryzias latipes) |
指導教授: |
林豊益
Lin, Li-Yih |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 排氨機制 、青鱂魚仔魚 、海水魚 、酸中毒 |
英文關鍵詞: | ammonia excretion, medaka larvae, SW-acclimated, acidity of water |
論文種類: | 學術論文 |
相關次數: | 點閱:177 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年文獻發現氨主要以非離子態NH3經由Rh蛋白排除。目前海水魚的排氨機制尚不清楚,本實驗以青鱂魚仔魚為模式動物,利用掃描式離子選擇電極技術(SIET)進行非侵入性測量,驗證假說(一)海水魚執行與淡水魚類似的排氨機制,(二)魚體誘導酸中毒會增加氨排放促進排酸。結果顯示,海水組排NH4+和排H+功能同時存在MRC上,且排氨速率顯著高於淡水組,並導致體表的鹼化,意味著在MRC上是以非離子態的NH3進行運輸後,在體表進行酸捕捉(acid trapping)。使用NHE抑制劑(500 μM EIPA)後,顯著降低魚體排酸、排氨,暗指NHE在排氨機制上扮演關鍵性的角色。馴養淡水酸性(pH5)環境的仔魚,顯示降低體表H+的累積,提升NH4+的排放,並增強細胞Na+的吸收,意味著酸中毒會增強排氨機制,利用排氨帶動大量酸排放,使NH3與H+結合成NH4+,促使更多的酸排出。本實驗證明(一)海水魚執行與淡水魚類似的排氨機制,(二)當魚體酸中毒會增強排氨機制,以利排酸。
Ammonia excretion in seawater (SW) teleost was rarely studied. In this study, an ion-selective microelectrode technique (SIET) was applied to analyze the ionic (H+ or NH4+) activity at the skin cells of SW-acclimated medaka (Oryzias latipes) larvae. Results showed that H+ and NH4+ were mainly excreted by mitochondrion-rich cells (MRCs). The excretion rate of NH4+ was significantly higher in SW than in FW. Elevated ammonia excretion in SW-larvae alkalized the skin surface, suggesting that non-ionic NH3 is excreted by MRCs. Both NH4+ and H+ excretion were inhibited by EIPA, suggesting that Na+/H+ exchanger (NHE) plays a critical role in the ammonia excretion. On the other hand, raising the acidity of water (FW, pH5) enhanced NH4+ excretion and Na+ uptake by MRCs whereas it reduced the H+ accumulation on the skin surface. This study demonstrated that mechanism of ammonia excretion in SW is similar to that in FW. In addition acidic water can enhance the NH4+ excretion and Na+ uptake in larvae.
Avella, M., and Bornancin, M. (1989). A new analysis of ammonia and sodium transport through the gills of the freshwater rainbow trout (Salmo gairdneri). J Exp Bio. 142, 155-175.
Boeuf, G. and Payan, P. (2001) How should salinity influence fish growth? Comp. iochem. Physiol. C 130, 411–423
Braun, M. H., Steele S. L., Ekker, M. and Perry, S. F. (2009). Nitrogen excretion in developing zebrafish (Danio rerio): a role for Rh proteins and urea transporters. Am J Physiol Renal Physiol 296, F994–F1005
Choe, K. P., Kato, A., Hirose, S., Consuelo Plata, Sindic, A., Romero, M. F., Claiborne, J. B. and Evans, D. H. (2005). NHE3 in an ancestral vertebrate: primary sequence, distribution, localization, and function in gills. Am J Physiol Regul Integr Comp Physiol 289, R1520-R1534.
Claiborne, J. B., Perry, E., Bellows, S. and Campbell, J. (1997). Mechanisms of acid-base excretion across the gills of a marine fish. J Exp Zool. 279, 509–520.
Catches, J. S., Burns, J. M., Edwards, S. L. and Claiborne, J. B. (2006). Na+/H+ antiporter, V-H+-ATPase and Na+/K+-ATPase immunolocalization in a marine teleost (Myoxocephalus octodecemspinosus). J Exp Biol 209, 3440-3447.
Claiborne, J. B., Blackston, C. R., Choe, K. P., Dawson, D. C., Harris, S. P., Mackenzie, L. A. and Morrison-Shetlar, A. I. (1999). A mechanism for branchial acid excretion in marine fish:identification of multiple Na+/H+ antiporter (NHE) isoforms in gills of two seawater teleosts. J Exp Biol 202, 315–324.
Donini, A. and O'Donnell, M. J. (2005). Analysis of Na+, Cl-, K+, H+, and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes. J Exp Biol 208, 603-10.
Edwards, S.L., Wall, B.P., Morrison-Shetlar A., Samuel, S., Weakley, J.C. and Claiborne, J.B. (2005). The Effect of Environmental Hypercapnia and Salinity on the Expression of NHE-Like Isoforms in the Gills of a Euryhaline Fish (Fundulus heteroclitus). J Exp Zool. 303A:464–475.
Evans, D. H., Piermarini, P. M. and Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85, 97-177.
Gracia-Lopez, V., Rosas-Vazquez, C and Brito-Perez, R. (2006). Effects of salinity on physiological conditions in juvenile common snook Centropomus undecimalis. Comp. Biochem. Physiol. A 145, 340–345.
Hirata, T., Kaneko, T., Ono, T., Nakazato, T., Furukawa, N., Hasegawa, S., Wakabayashi, S., Shigekawa, M., Chang, M.-H., Romero, M. F. et al. (2003). Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol Regul Integr Comp Physiol 284, R1199–R1212.
Hiroi, J., Yasumasu, S., McCormick, S. D., Hwang, P.-P. and Kaneko, T. (2008). Evidence for an apical Na–Cl cotransporter involved in ion uptake in a teleost fish. J Exp Biol 211, 2584-2599.
Horng, J. L., Lin, L. Y., and Hwang, P.P. (2009). Functional regulation of H_-ATPase-rich cells in zebrafish embryos acclimated to an acidic environment. Am J Physiol Cell Physiol 296, C682–C692.
Hung, C. Y., Tsui, K. N., Wilson, J. M., Nawata, C. M., Wood, C. M. and Wright, P. A. (2007). Rhesus glycoprotein gene expression in the mangrove killifish Kryptolebias marmoratus exposed to elevated environmental ammonia levels and air. J Exp Biol 210, 2419-29
Hwang, P. P. and Lee, T. H. (2007). New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol. Part A 148, 479-197.
Inokuchi, M., Hiroi, J., Watanabe, S., Lee, K. M. and Kaneko, T. (2008). Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities. Comparative Biochemistry and Physiology, Part A 151, 151-158.
Inoue, K. and Takei, Y. (2002). Diverse adaptability in Oryzias species to high environmental salinity. Zoological Science 19, 727-734.
Khademi, S., O'Connell, J., Remis, J., Robles-Colmenares, Y., Miercke, L. J. and Stroud, R. M. (2004). Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305, 1587-94.
Knepper, M. A., Packer, R. and Good, D. W. (1989). Ammonium transport in the kidney. Physiol Rev 69, 179-249.
Lin, H. and Randall, D. J. (1990). The effect of varying water pH on the acidification of expired water in rainbow trout. J Exp Biol 149, 149-160.
Lin, H. and Randall, D. J. (1993). H+-ATPase activity in crude homogenates of fish gill tissue–inhibitor sensitivity and environmental and hormonal regulation. J. Exp. Biol. 180, 163-174.
Lin, H., Pfeiffer, D. C., Vogl, A. W., Pan, J. and Randall, D. J. (1994). Immunolocalization of H+-ATPase in the gill epithelia of rainbow trout. J. Exp. Biol. 195, 169-183.
Lin, L. Y., Horng, J. L., Kunkel, J. G. and Hwang, P. P. (2006). Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 290, C371–C378.
Lin, T. Y., Liao, B. K., Horng, J. L., Yan,J. J., Hsiao, C. D. and Hwang, P. P. (2008). Carbonic anhydrase 2-like a and 15a are involved in acid-base regulation and Na+ uptake in zebrafish H+-ATPase-rich cells. Am J Physiol Cell Physiol 294, C1250–C1260.
Marshall, W. S. and Grosell, M. (2005). Ion transport, osmoregulation, and acid-base balance. The Physiology of Fishes, 177-230.
McLamore, E. S., Porterfield, D. M. and Banks, M. K. (2009). Non-invasive self-referencing electrochemical sensors for quantifying real-time biofilm analyte flux. Biotechnology and Bioengineering 102, 791-799.
Morgan, J. D. and Iwama, G. K. (1991). Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow and steelhead trout (Oncorhynchus mykiss) and fall chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish Aquat. Sci. 48, 2083–2094.
Nakada, T., Hoshijima, K., Esaki, M., Nagayoshi, S., Kawakami, K. and Hirose, S. (2007a). Localization of ammonia transporter Rhcg1 in mitochondrion-rich cells of yolk sac, gill, and kidney of zebrafish and its ionic strength-dependent expression. Am J Physiol Regul Integr Comp Physiol 293, R1743-53.
Nakada, T., Westhoff, C. M., Kato, A. and Hirose, S. (2007b). Ammonia secretion from fish gill depends on a set of Rh glycoproteins. FASEB J 21, 1067-74.
Nawata, C. M., Hung, C. C., Tsui, T. K., Wilson, J. M., Wright, P. A. and Wood, C. M. (2007). Ammonia excretion in rainbow trout (Oncorhynchus mykiss): evidence for Rh glycoprotein and H+-ATPase involvement. Physiol Genomics 31, 463-74.
Nawata, C. M., Hirose, S., Nakada, T., Wood, C. M. and Kato, A. (2010). Rh glycoprotein expression is modulated in pufferfish (Takifugu rubripes) during high environmental ammonia exposure. J. Exp. Biol. 213, 3150-3160.
Perry, S. F. and Gilmour, K. M. (2006). Acid–base balance and CO2 excretion in fish: Unanswered questions and emerging models. Respiratory Physiology & Neurobiology 154, 199-215.
Shih, T. H., Horng, J. L., Hwang, P.-P. and Lin, L.-Y. (2008). Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol Cell Physiol 295, C1625-C1632.
Sardella, B.A., Cooper, J., Gonzalez, R.J. and Brauner, C.J. (2004). The effect of temperature on juvenile Mozambique tilapia hybrids (Oreochromis mossambicus×O. urolepis hornorum) exposed to full-strength and hypersaline seawater. Comp. Biochem. Physiol. A 137, 621–629.
Smith, P. J. S., Hammar, K., Porterfield, D. M., Sanger, R. H. and Trimarchi, J. R. (1999). Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microscopy Research and Technique 46, 398-417.
Tresguerres, M., Katoh, F., Fenton, H., Jasinska, E. and Goss, G.G. (2005). Regulation of branchial V-H+-ATPase, Na+/K+-ATPase and NHE2 in response to acid and base infusions in the Pacific spiny dogfish (Squalus acanthias). J Exp Biol. 208, 345-354.
Uliano, E., Cataldi, M., Carella, F., Migliaccio, O., Iaccarino, D. and Agnisola, C. (2010). Effects of acute changes in salinity and temperature on routine metabolism and nitrogen excretion in gambusia (Gambusia affinis) and zebrafish (Danio rerio). Comp. Biochem. Physiol. A 157, 283–290.
Wilkie, M. P. (2002). Ammonia excretion and urea handling by fish gills: present understanding and future research challenges. J Exp Zool 293, 284-301.
Wilson, R., Wright, P., Munger, S. and Wood, C. (1994). Ammonia excretion in freshwater rainbow trout (oncorhynchus mykiss) and the importance of gill boundary layer acidification: lack of evidence for Na+/NH4+ exchange. J Exp Biol 191, 37-58.
Wilson, J. M., Whiteley, N. M. and Randall, D. J. (2002). Ionoregulatory Changes in the Gill Epithelia of Coho Salmon during Seawater Acclimation. Physiological and Biochemical Zoology 75, 237-249.
Wright, P. A. (1995). Nitrogen excretion: three end products, many physiological roles. J Exp Biol 198, 273-81.
Wu, S. C., Horng, J. L., Liu, S. T., Hwang, P. P., Wen, Z. H., Lin, S. C. and Lin, L. Y. (2010). Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am J Physiol Cell Physiol 298: C237–C250.