研究生: |
王鈞 Chun Wang |
---|---|
論文名稱: |
布朗運動時顆粒體的能量均分現象 Energy Equipartition In Granular Brownian Motion |
指導教授: |
杜其永
To, Ki-Wing 黃仲仁 Huang, Jung-Ren |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | yesterday |
中文關鍵詞: | 顆粒體 、能量均分 、布朗運動 |
英文關鍵詞: | granular, equipartition, Brownian motion |
DOI URL: | https://doi.org/10.6345/NTNU202205475 |
論文種類: | 學術論文 |
相關次數: | 點閱:156 下載:19 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究宏觀下被釐米大小的顆粒氣體(視為分子)所環繞的物體(公分大小)之布朗運動(Brownian motion)行為,當振動台給予系統垂直振動時,我們利用高速攝影技術來追蹤物體在水平面之位置、速度、方向及角速度。藉由這些影像,我們測量物體在水平面之兩個方向的移動及轉動的平均動能,令人驚訝的是,我們發現在誤差範圍下物體的移動自由度和轉動自由度的平均動能是相同的,即在非平衡態下的顆粒體系統中物體是遵守能量均分定律的。之後,我們做了二維分子動力學模擬,但是發現除非粒子的表面極度粗糙否則粒子無法有能量均分現象。
We study the Brownian motion of a macroscopic (centimeter size) granular object surrounded by a granular gas composed of millimeter size spheres acting as the molecules. While the system is vibrated vertically by an electromagnetic shaker, we use a fast camera to capture the temporal variations of the horizontal position and the orientation from above. From the captured image sequences, we manage to measure the translational and the rotational velocities in the horizontal plan. Suprisingly, we find that the average kinetic energies carried by the translational degrees of freedom and the rotational degree of freedom of the disk are the same within experimental uncertainty. Hence energy equipartition is found to valid even for nonequilibrium granular systems.
We find granular object obey Equipartition law. Then, we do the two dimentional molecular dynamic simulation and we find granular object won’t obey Equipartition law unless the granular object surface is extremely rough.
[1]R. A. L. Jones, Soft Condensed Matter, Oxford University Press(2002).
[2]Stephen J. Blundell and Katherine M.Blundell, Thermal Physics, Oxford University Press(2010).
[3]賈魯強,黎璧賢,漫談顆粒體物理,物理雙月刊,23卷4期,503 (2001).
[4]T. Wang, K. To, Granular gas in a vibrating box, Chin. J. Phys. 45, 675 (2007).
[5]陳文楠, An experimental study of the motion of a quasi two-dimensional granular gas, 國立清華大學物理所碩士論文(2008).
[6]W. Chen, K. To, Unusual diffusion in a quasi-two-dimensional granular gas, Phys. Rev. E 80, 061305 (2009).
[7]K. To, Boltzmann distribution in a nonequilibrium steady state: Measuring local potential by granular Brownian particles, Phys. Rev. E 89, 062111 (2014).
[8]J. S. van Zon, F. C. MacKintosh, Velocity distributions in dilute granular systems, Phys. Rev. E 72, 051301 (2005).
[9]W. Losert, D.G.W. Cooper, J. Delour, A. Kudrolli, J.P. Gollub, Velocity statistics in excited granular media, Chaos 9, 682 (1999).
[10]F. Rouyer, N. Menon, Velocity fluctuations in a homogeneous 2D granular gas in steady state, Phys. Rev. Lett. 85, 3676 (2000).
[11]J.S. Olafsen, J.S. Urbach, Velocity distributions and density fluctuations in a granular gas, Phys. Rev. E 60, R2468 (1999).
[12]G.W. Baxter, J.S. Olafsen, The temperature of a vibrated granular gas, Granular Matter 9, 135 (2007).
[13]K. Feitosa, N. Menon, Breakdown of energy equipartition in a 2D binary vibrated granular gas, Phys. Rev. Lett. 88, 198301 (2002).
[14]K. Nichol, K.E. Daniels, Equipartition of rotational and translational energy in a dense granular gas, Phys. Rev. Lett. 108, 018001 (2012).
[15]S. McNamara, S. Luding, Energy nonequipartition in systems of inelastic, rough spheres, Phys. Rev. E 58, 2247 (1998).
[16]D. C. Rapaport, The Art of Molecular Dynamics Simulation - 2nd ed., Cambridge University Press, (2004).
[17]S. Luding, Granular materials under vibration: Simulations of rotating spheres, Phys. Rev. E 52, 4442 (1995).
[18]A. Barrat, E. Trizac, Molecular dynamics simulations of vibrated granular gases, Phys. Rev. E 66, 051303 (2002).
[19]O. Herbst, R. Cafiero, A. Zippelius, H.J. Herrmann, S. Luding, A driven two-dimensional granular gas with Coulomb friction, Phys. Fluids 17, 107102 (2005).
[20]A. Barrat, E. Trizac, Lack of energy equipartition in homogeneous heated binary granular mixtures, Granular Matter 4, 57 (2002).
[21]N.V. Brilliantov, T. Po¨schel, W. T. Kranz, A. Zippelius, Translations and Rotations Are Correlated in Granular Gases, Phys. Rev. Lett. 98, 128001 (2007).