研究生: |
李幸憲 |
---|---|
論文名稱: |
黑色矽巨孔洞陣列結構應用於矽晶太陽能電池之研究 Research on black silicon macroporous arrays structure for silicon solar cell application |
指導教授: | 楊啟榮 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 126 |
中文關鍵詞: | 太陽能電池 、抗反射結構 、黑色矽巨孔洞陣列 、光輔助電化學蝕刻 、多孔矽 |
英文關鍵詞: | solar cell, antireflective structure, black silicon macroporous arrays, photo-assisted electrochemical etching, porous silicon |
論文種類: | 學術論文 |
相關次數: | 點閱:240 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著石化燃料日益短缺與環保意識的高漲,人類亟需一種乾淨、無污染的能量來源,以應用於再生能源。太陽光能取之不盡,用之不竭,在發電的過程中無噪音且零汙染,因此,太陽能電池被視為最具潛力的再生能源。目前市面上的商用太陽能電池,其抗反射結構僅侷限於隨機金字塔結構,並無法達到最佳的抗反射效能。有鑑於傳統的太陽能電池製作方法,對於抗反射效能的提升極為有限,故本研究提出以黃光微影定義圖案搭配光輔助電化學蝕刻(PAECE)之整合技術,在矽晶片表面製作高深寬比的黑色矽巨孔洞陣列結構,而此結構將使太陽電池具有較佳的抗反射效能。
多孔矽成長於525 um與380 um之矽基板,當PAECE蝕刻時間為0.5 hr、1 hr、1.5 hr及2 hr條件下,皆能得到黑色矽巨孔洞陣列結構,且其反射率皆能大幅度降低。在280 nm-800 nm波長範圍內,空白矽晶片的平均反射率為37.35 %。未經過PAECE蝕刻的倒金字塔陣列,平均反射效率為6.2 %;具倒金字塔陣列再經PAECE蝕刻後,於525 um之矽基板條件下,經過30分鐘的PAECE蝕刻後,平均反射效率可大幅降低為1.02 %,而經過2 hr的PAECE蝕刻後,平均反射率更可降低為0.81 %。若晶片減薄至380 um時,經過2 hr的PAECE蝕刻後,能進一步降低反射率至0.72 %。此時結構除了具有倒金字塔的形貌外,尚還具有深凹的巨孔洞、微溝渠、隨機多孔矽及黑色多孔矽薄膜層等五種特殊結構。本研究提出的新型複合結構將能具有良好的光捕捉效應,並且增大受光表面積與P-N接面面積,可實際應用於單晶矽太陽能電池,將使太陽能電池的效率能進一步提升。
With the fossil fuels are shortage day by day and the raised environmental consciousness, humans need anxiously power sources which are clean and environmental friendly and applicable to on renewable energy. Solar energy is inexhaustible, calm and environmental friendly in the power generation. Therefore, solar cell is thought as the most promising renewable energy. Nowadays, commercial cell usually use the random pyramid as an antireflective structure, but its antireflective performance is not very well. The improvement of antireflective performance for conventional solar cell is not easy to achieve. Therefore, this study presents the integration of photolithography and photo-assisted electrochemical etching (PAECE) to fabricate a black silicon macroporous arrays with a high aspect ratio on the surface of silicon wafer, it will improve antireflective performance significantly.
Porous silicon (PS) was grown on the 525 um and 380 um thick silicon wafers. The black silicon are produced after PAECE under the etching time of 0.5 hr, 1 hr, 1.5 hr, and 2 hr, respectively. The macroporous arrays with low reflection in the 280-800 nm wavelength regimes can be easily achieved. The weighted mean reflectance of a blank silicon wafer is 37.35 % in the 280-800 nm wavelength regimes. Inverted pyramid arrays without PAECE can reduce the weighted mean reflectance to 6.2 %. Inverted pyramid arrays with 30 min PAECE reduce the weighted mean reflectance even to 1.05 % on the 525 um thick silicon wafer. Besides, after PAECE of 2 hrs can reduce the weighted mean reflectance to 0.81 %. Besides, if the thickness of silicon wafer is decreased to 380 um, the weighted mean reflectance after PAECE of 2 hrs process further reduce to 0.72 %. The novel structure of combining inverted pyramid, deep macroporous, micro-trench, random porous, and black porous membrane can be observed simultaneously. Such a compound antireflective structure proposed in this study has the advantage to enhance light trapping, increase the area of light absorption and P-N junction, and can be applied as an antireflective structure to single crystalline silicon solar cell to improve its performance of efficiency.
[1] T. Markvart, Solar Electricity. Wiley, 2003.
[2] 林明獻,太陽電池技術入門,全華圖書股份有限公司,2007年10月.
[3] M.A. Green, J. Zhao, A. Wang, and S. R. Wenham, "Very
High Efficiency Silicon Solar Cells—Science and
Technology", IEEE Transactions on electron device,
Vol.3, 1999.
[4] M. A. Green, K. Emery, Y. Hishikawa and W.Warta,
"Solar cell efficiency tables (version 33)", Progress
in Photovoltaics: Research and Applications, Vol. 17,
pp.85-94, 2009.
[5] A. W. Blakers and M. A. Green, "20% efficiency silicon
solar cells", Applied Physics Letter, Vol. 48, No. 3,
pp. 215-217, 1986.
[6] R. R. King, R. A. Sinton, and R. M. Swanson, "Front
and back surface fields for point-contact solar cells "
,IEEE, pp. 538-544, 1988.
[7] A. Metz and R. Hezel "Record efficiencies above 21%
for MIS-contacted diffused junction silicon solar
cells ",IEEE, pp. 283-286, 1997.
[8] J. Zhao, A. Wang and M. A. Green, "24.5% Efficiency
silicon PERT Cells on MCZ substrates and 24.7%
efficiency PERL cells on FZ substrates ", Progress in
Photovoltaics: Research and Applications, Vol. 7, pp.
471-474, 1999.
[9] J. Zhao, A. Wang, P. P. Altermatt, and M. A. Green,
"High efficiency PERT cell on N-type silicon
substrates", IEEE, pp. 218-221, 2002.
[10] Rudolf hezel, "High-efficiency OECO Czochralski-
silicon solar cells for mass production", Solar Energy
Materials Energy & Solar Cells, Vol. 74, pp. 25-33,
2002.
[11] R. Hezel, "Novel back contact silicon solar cells
designed for very high efficiencies and low-cost mass
production ", IEEE, pp. 114-117, 2002.
[12] J.W. Muller, A. Merkle and R. Hezel, "Self-aligning,
industrially feasible back contacted silicon solar
cells with efficiencies >18 %", FVS PV-UNI-NETZ,
Workshop, pp. 141-145, 2003.
[13] M. Tanaka, S. Okamoto, S. Tsuge and S. Kiyama
"Development of HIT solar cells with more than 21%
conversion efficiency and commercialization of highest
performance HIT modules", 3rd World Conference on
Photovoltaic Energy Conversion, pp. 955-958, 2003.
[14] S. W. Glunz, E. Schneiderlöchner, D. Kray, A. Grohe,
M. Hermle, H. Kampwerth, R. Preu, and G. Willeke
"Laser-fired contact silicon solar cells on p-and n-
substrates", 19th European Photovoltaic Solar Energy
Conference, pp. 408-411, 2004.
[15] O. Schultz, S. W. Glunz and G. P. Willeke
"Multicrystalline silicon solar cells exceeding 20%
efficiency", Progress in Photovoltaics: Research
Application, Vol. 12, pp. 553-558, 2004.
[16] E.T. Franklin, A. Blakers, K. Weber and V. Everett
"20% efficient sliver cells fabricated with a
simplified processing sequence", ANZSES, pp. 1-6, 2006.
[17] M. Hofmann, S. Janz, C. Schmidt, S. Kambor, D. Suwito,
N. Kohn, J. Rentsch, R. Preu and S. W. Glunz "Recent
developments in rear-surface passivation at Fraunhofer
ISE", Solar Energy materials & solar cells, pp.1074-
1078, 2009.
[18] F. Granek, M. Hermle, D. M. Huljic, O. S. Wittmann and
S. W. Glunz "Enhanced lateral current transport via
the front N+ diffused layer of N-type high-efficiency
back-junction back-contact silicon solar cells", Prog.
in Photovolataics: Res. Appl., Vol. 17, pp. 47-56,
2009.
[19] N. P. Harder, S. Hermann, A. Merkle, T. Neubert, T.
Brendemuhl, P. Engelhart, R. Meyer and R. brendel
"Laser-processed high-efficiency silicon RISE-EWT
solar cells and characterisation", Physica Status
Solidi C, pp.736-743, 2009.
[20] V. Y. Yerokhova, R. Hezelb, M. Lipinskic, R. Ciachc,
H. Nagelb, A. Mylyanycha, and P. Panekc, "Cost-
effective methods of texturing for silicon solar
cells", Solar Energy Material and Solar Cells, Vol.
72, pp. 291-298, 2002.
[21] K. Tsujino and M. Matsumura, "Formation of a low
reflective surface on crystalline silicon solar cells
by chemical treatment using Ag electrodes as the
catalyst", Solar Energy Material and Solar Cells, Vol.
90, pp. 1527-1532, 2006.
[22] J. S. Yoo, I. O. Parm, U. Gangopadhyay, Kyunghae Kim,
S. K. Dhungel, D. Mangalaraj, and J. Yi, "Black
silicon layer formation for application in solar
cells", Solar Energy Material and Solar Cells, Vol.
90, pp. 3085-3093, 2006.
[23] B. C. Chakravarty, J. Tripathi, A. K. Sharma, R.
Kumar, K. N. Sood, S. B. Samanta, and S. N. Singh,
"The growth kinetics and optical confinement studies
of porous Si for application in terrestrial Si solar
cells as antireflection coating", Solar Energy
Material and Solar Cells, Vol. 91, pp. 701-706, 2007.
[24] C. H. Sun, W. L. Min, N. C. Lin, P. Jiang and B. Jiang
"Templated fabrication of large area subwavelength
antireflection gratings on silicon", Applied physics
letters, Vol. 91, 231105, 2007.
[25] C. T. Wu, F. H. Ko, and C. H. Lin, "Self-organized
tantalum oxide nanopyramidal arrays for antireflective
structure", Applied Physics Letters, Vol. 90, 171911,
2007.
[26] C. H. Sun, P. Jiang and B. Jiang “broadband moth-eye
antireflection coatings on silicon", Applied physics
letters, Vol. 92, 061112, 2008.
[27] K. Nishioka, S. Horita, K. Ohdaira, and H.
Matsumura, "Antireflection subwavelength structure of
silicon surface formed by wet process using catalysis
of single nano-sized gold particle", Solar Energy
Material and Solar Cells, Vol. 92, pp. 919-922, 2008.
[28] M. D. B. Charlton, H. W. Lau, and G. J. Parker, "High
aspect ratio photo-assisted electro-chemical etching
of silicon and its application for the fabrication of
quantum wires and photonic band structures", IEE
Colloquium on Microengineering Applications in
Optoelectronics, pp. 1-9, 1996.
[29] A. Satoh, "Formation of through-holes on silicon wafer
by optical excitation electropolishing method",
Japanese Journal of Applied Physics, Vol. 39, pp. 378-
386, 2000.
[30] V. Lehmann and H. Föll, "Formation mechanism and
properties of electrochemically etched trenches in n-
type silicon", Journal of the Electrochemical Society,
Vol. 137, pp. 653-658, 1990.
[31] V. Lehmann and U. Grüning, "The limits of macropore
array fabrication", Thin Solid Films, Vol. 297, pp. 13-
17, 1997.
[32] V. Lehmann, "The physics of macropore formation in low-
doped n-type silicon", Journal of the Electrochemical
Society, Vol. 140, pp. 2836-2843, 1993.
[33] V. Lehmann, "Porous silicon formation and other photo-
electrochemical effects at silicon electrodes anodized
in hydrofluoric acid", Applied Surface Science, Vol.
106, pp. 402-405, 1996.
[34] V. Lehmann, "Porous silicon-a new material for MEMS",
Proc. of Micro Electro Mechanical System Workshop,
California, USA, pp. 1-6, 1996.
[35] S. O. Kasap, Optoelectronics and photonics, Canada:
Prentice Hall, 2001.
[36] A. Uhir, "Electrolytic shaping of germanium and
silicon", Bell System Technical Journal, Vol. 35, pp.
333-347, 1956.
[37] S. Rowson, A. Chelnokov, and J. M. Lourtioz, "Two-
dimensional photonic crystals in macroporous silicon:
From mid-infrared (10 um) to telecommunication
wavelengths (1.3u-1.5 um)", Journal of Lightwave
Technology, Vol. 17, pp. 1989-1995, 1999.
[38] U. Grüninga, V. Lehmann, S. Ottow, and K.Busch,
"Macroporous silicon with a complete two-dimensional
photonic band gap centered at 5 µm", Applied Physics
Letters, Vol. 68, 747, 1996.
[39] F. Müller, A. Birner, U. Gösele, V. Lehmann, S. Ottow,
and H. Föll, "Structuring of macroporous silicon for
applications as photonic crystals", Journal of Porous
Material, 201, 2000.
[40] P. Roussel, V. Lysenko, B. Remaki, G. Delhomme, A.
Dittmar, and D. Barbier, "Thick oxidised porous
silicon layers for the design of a biomedical thermal
conductivity microsensor", Sensor and Actuators A,
Vol. 74, pp. 100-103, 1999.
[41] M. B. Ali, R. Mlika, H. B. Ouada, R. M’ghaïeth, and
H. Maâref, "Porous silicon as substrate for ion
sensors", Sensor and Actuators A, Vol. 74, pp. 123-
125, 1999.
[42] S. Bastide, A. Albu-Yaron, S. Strehlke, and C. Lévy-
Clément, "Formation and characterization of porous
silicon layers for application in multicrystalline
silicon solar cells", Solar Energy Materials & Solar
Cells, Vol. 57, pp.393-417, 1999.
[43] H. Ohji, S. Izuo, P. J. French, and K. Tsutsumi,
"Pillar structures with a sub-micron space fabricated
by macroporous-based micromachining", Sensor and
Actuators A, Vol. 97-98, pp. 744-748, 2002.
[44] S. Izuo, H. Ohji, and P. J. French, "A novel
electrochemical etching technique for n-type silicon",
Sensors and Actuators A, Vol. 97, pp. 720-724, 2002.
[45] H. Ohji, P.J. French, and K. Tsutsumi, "Fabrication of
mechanical in p-type silicon using electrochemical
etching", Sensors and Actuators, Vol. 82, pp. 254-258,
2000.
[46] R. L. Smith and S. D. Collins, "Porous silicon
formation mechanisms", Journal of Applied Physics,
Vol. 71, pp. 1-22, 1992.
[47] V. Lehmann and S. Ronnebeck, "The physics of macropore
formation in low-doped p-type silicon", Journal of the
Electrochemical Society, Vol. 146, pp. 2968-2975, 1999.
[48] 吳浩青 等人, "電化學動力學", 科技圖書股份有限公司, pp. 179
183, 2001.
[49] X. Badel, "Electrochemically etched pore arrays in
silicon for X-ray imaging detectors", Ph.D Thesis, The
Royal Institute of Technology, pp. 5-21, 2005.
[50] M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G.
Chew, and A. G. Cullis, "An experimental and
theoretical study of the formation and microstructure
of porous silicon", Journal of Crystal Growth, Vol.
73, pp. 622-636, 1985.
[51] M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis,
and J. D. Benjamin, "Microstructure and formation
mechanism of porous silicon", Applied Physics Letters,
Vol. 46, pp. 86-88, 1985.
[52] X. G. Zhang, S. D. Collins, and R. L. Smith, "Porous
silicon formation and electropolishing of silicon by
anodic polarization in HF solution", Journal of the
Electrochemical Society, Vol. 136, pp. 1561-1565, 1989.
[53] X. G. Zhang, "Mechanism of pore formation on n-type
silicon", Journal of the Electrochemical Society, Vol.
138, pp. 3750-3756, 1991.
[54] R. L. Smith, S. F. Chuang, and S. D. Collins, "A
theoretical model of the formation morphologies of
porous silicon", Journal of Electronic Materials, Vol.
17, pp. 533-541, 1988.
[55] 劉時郡, "單晶矽太陽能電池製程改善及退火處理之研究", 崑山科技大
學電機工程學系, 碩士論文, 2007.
[56] 羅嘉佑, "晶圓穿孔陣列之光輔助電化學蝕刻特性研究", 國立臺灣師範
大學機電科技學系, 碩士論文, 2008.
[57] 李明承, "整合光輔助電化學穿孔蝕刻與微電鑄技術應用於微金屬柱陣
列之研製", 國立臺灣師範大學機電科技學系, 碩士論文, 2007.
[58] R.E. Camacho, et al., “Carbon Nanotube Arrays for
Photovoltaic Applications,” Nanomaterials for
Electronic Applications, pp. 39-42, 2007.
[59] http://www.pvcdrom.pveducation.org/index.html
[60] http://www.udel.edu/igert/pvcdrom/APPEND/AM0AM1_5.xls
[61] S. Ronnebeck, J. Carstensen, S. Ottow and H. Foll,
"Crystal orientation dependence of macropore growth in
n-type silicon ", Electrochemical and Solid-State
Letters, Vol. 3, pp. 126-128, 1999.