簡易檢索 / 詳目顯示

研究生: 周宜婷
論文名稱: 兩種半穿透型水膠之製備以及作為水泥砂漿自養護劑
The Preparation and Application of two Semi-IPN Hydrogel as Self-Curing Agents for Cement Mortars
指導教授: 許貫中
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 96
中文關鍵詞: 半穿透式水膠製備反應物比例吸水率水泥漿水化程度砂漿重量損失溼度抗壓強度長度變化
英文關鍵詞: semi-IPN hydrogel, preparation, reactant ratio, water absorbency, cement paste, degree of cement hydration, mortar, weight loss, humidity compressive strength, length change
論文種類: 學術論文
相關次數: 點閱:242下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文為製備兩種半穿透式網狀水膠(semi-IPN)︰polyaspartate/polyacrylamide (Pasp/PAM) and poly(2-(3-carboxypro pan- amido) acetate)/polyacrylamide/polyethylene glycol (PPAA/PAM/ PEG)。Pasp/PAM水膠係以Pasp與丙烯醯胺為反應物,Ammonium persulfate (APS) 為起始劑,N,N’ methylene bisacrylamide (MBA)為交聯劑,經由自由基聚合反應而得;PPAA/PAM/PEG水膠係以PPAA、PEG與丙烯醯胺為反應物,APS 為起始劑 MBA為交聯劑,經由自由基聚合反應而得。聚合得到的兩種水膠均經由量測分析其FTIR光譜確認。另外,量測兩種水膠在水溶液中的吸水率。
    (一) Pasp/PAM水膠
    探討不同單體配比、交聯劑和起始劑濃度,對於Pasp/PAM水膠在水溶液中吸水率的影響。將水膠加入水泥漿中,探討水膠含量對於水泥漿的水泥水化程度和凝結時間的影響;將水膠加入砂漿中,探討水膠含量對於砂漿重量損失、內部濕度、抗壓強度、長度變化的影響。
    研究結果隨著PAM含量的增加水膠含量的吸水率漸減;隨著APS或MBA濃度的增加水膠含量的吸水率呈現先增加、達最大值後開始減少。當聚合時添加0.8 mol% APS, 0.5 mol% MBA, Pasp/PAM=1/1,所得的水膠有最大的吸水率,在純水、0.1M NaCl(aq)和0.1M CaCl2(aq)的飽和吸水率分別為159.7g/g, 39.2 g/g和32.2 g/g。
    隨著水膠含量的增加,7-28天水泥漿體中的水泥水化程度先增加、達最大值後開始減少,水膠添加量為0.2wt%的水泥漿體中的水泥水化程度最高。另外,隨著水膠含量的增加,水泥漿體的初凝時間變長而終凝時間變短。
    隨著水膠含量的增加,砂漿試體的重量損失、長度變化呈現先減少、達最小值後開始增加;內部濕度、抗壓強度則先增加、達最大值後開始減少。水膠添加量為0.2wt%的砂漿試體有最小的重量損失和長度變化,有最高的內部濕度和抗壓強度。隨著水膠含量的增加,水泥漿體的初凝時間變長而終凝時間變短。
    水膠添加量為0.2wt%的28天砂漿試體的重量損失為13.03 g,為未添加水膠砂漿(14.46 g)的90.1%;抗壓強度為38.66 MPa,比未添加水膠砂漿(25.31 MPa)高;內部相對濕度為56.7 %,比未添加水膠砂漿(52 %)高;長度變化為為-0.19 mm,比未添加水膠砂漿(-0.210 mm)小。

    (二) PPAA/PAM/PEG水膠
    探討PEG含量對於PPAA/PAM/PEG水膠在水溶液中吸水率的影響。將0.2wt%水膠加入水泥漿中,探討PEG含量對於水泥漿的水泥水化程度和凝結時間的影響;將0.2 wt%水膠加入砂漿中,探討水膠含量對於砂漿重量損失、內部濕度、抗壓強度、長度變化的影響。
    研究結果隨著PEG含量的增加水膠含量的吸水率漸減。當聚合時添加1.0 mol% APS, 0.2 mol% MBA, PPAA/PAM=1/1,所得的水膠,在純水、0.1M NaCl(aq)和0.1M CaCl2(aq)的飽和吸水率分別為410.8g/g, 65 g/g和63 g/g。而PEG若接入水膠後其吸水率會下降,例如聚合時添加1.0 mol% APS, 0.2 mol% MBA, PPAA/PAM/PEG=1/1/0.5,所得的水膠,在純水、0.1M NaCl(aq)和0.1M CaCl2(aq)的飽和吸水率分別為189.4 g/g, 32.3 g/g和29.8 g/g。
    隨著PEG含量的增加,3-28天添加0.2 wt% 水膠的水泥漿體中的水泥水化程度先增加、達最大值後開始減少,PEG含量為20 wt%的水泥漿體(水膠添加量為0.2wt%)中的水泥水化程度最高。另外,隨著PEG含量的增加,水泥漿體的初凝時間變長而終凝時間則改變不大。
    隨著PEG含量的增加,添加0.2 wt% 水膠的砂漿試體的重量損失、長度變化呈現先減少、達最小值後開始增加;內部濕度、抗壓強度則先增加、達最大值後開始減少。PEG添加量為20 wt%的砂漿試體(PPAA/PAM/PEG(=1/1/0.2)水膠添加量為0.2wt%)有最小的重量損失和長度變化,有最高的內部濕度和抗壓強度。

    This thesis has prepared two semi-IPN hydrogels, i.e., polyaspartate/polyacrylamide (Pasp/PAM) and poly(2-(3-carboxypropanamido) acetate)/polyacrylamide/polyethylene glycol (PPAA/PAM/PEG). Pasp/PAM hydrogel was prepared from polyaspartate and acrylamide through free radical polymerization. PPAA/PAM/PEG hydrogel was prepared from poly(2-(3- carboxypropanamido)acetate), polyethylene glycol, and acrylamide through free radical polymerization. Ammonium persulfate (APS) and N,N’ methylene bisacrylamide (MBA) were used as an initiator and a crosslinking agent, respectively. The chemical structures of both hydrogels were verified by FTIR spectroscopy. The water absorbency of these hydrogels in aqueous solutions was measured.
    1. Pasp/PAM hydrogel:
    The effect of reactant ratio, APS and MBA content on the water absorbency of Pasp/PAM hydrogel was studied. The hydrogel was then added in cement pastes and mortars. The effects of the hydrogels on the properties of cementitious materials were determined and discussed.
    The result indicates that the water absorbency of Pasp/PAM hydrogel increased with decreasing PAM content. Increase of either APS or MBA content increased the water absorbency initially, reached a maximum value, and decreased afterwards. The hydrogel showed the highest water absency when it was prepared with Pasp/PAM=1/1, using 0.8 mol% APS and 0.5 mol% MBA. The saturated water absorbency were 159.7 g/g, 39.2 g/g, and 32.2 g/g, in pure water, 0.1M NaCl(aq), and 0.1 M CaCl2(aq), respectively.
    At 7 and 28 days, the degree of cement hydration increased with hydrogel content first, reached a maximum value, and decreased afterwards. The cement pastes with 0.2 wt% hydrogel showed the highest degree of cement hydration. Along with increasing hydrogel content, the initial setting time increased, but the final setting time decreased.
    Increase of hydrogel content decreased the weight loss and length change of mortars, reached minimum values, and increased subsequently. Increase of hydrogel content increased the relative humidity inside mortars and improved the compressive strength, reached maximum values, and decreased subsequently. The mortars with 0.2 wt% hydrogel showed the lowest weight loss and length change, and the highest relative humidity and compressive strength.
    2. PPAA/PAM/PEG hydrogel:
    The effect of PEG content on the water absorbency of PPAA/PAM/PEG hydrogel was studied. The hydrogel was then added in cement pastes and mortars. The effects of the PEG content on the properties of cementitious materials with 0.2 wt% hydrogel were determined and discussed.
    The result indicates that the water absorbency of PPAA/PAM/PEG hydrogel decreased with increasing PEG content. The hydrogel showed the highest water absency when it was prepared with PPAA/PAM =1/1, using 1.0 mol% APS and 0.2 mol% MBA. The saturated water absorbency were 410.8 g/g, 65 g/g, and 63 g/g, in pure water, 0.1M NaCl(aq), and 0.1 M CaCl2(aq), respectively. The hydrogel showed the highest water absency when it was prepared with PPAA/PAM/PEG =1/1/0.5, using 1.0 mol% APS and 0.2 mol% MBA. The saturated water absorbency were 189.4 g/g, 32.3 g/g, and 29.8 g/g, in pure water, 0.1M NaCl(aq), and 0.1 M CaCl2(aq), respectively.
    At 3-28 days, the degree of cement hydration with 0.2 wt% hydrogel increased with PEG content first, reached a maximum value, and decreased afterwards. The cement pastes with 0.2 wt% hydrogel containing 20 wt% PEG showed the highest degree of cement hydration. Along with increasing PEG content, the initial setting time increased, but the final setting time did not change significantly.
    Increase of PEG content decreased the weight loss and length change of mortars with 0.2. wt% hydrogel, reached minimum values, and increased subsequently. Increase of hydrogel content increased the relative humidity inside mortars and improved the compressive strength, reached maximum values, and decreased subsequently. The mortars with 0.2 wt% hydrogel containing 20 wt% PEG (PPAA/PAM/PEG=5/5/1) showed the lowest weight loss and length change, and the highest relative humidity compressive strength.

    摘要 i Abstract iv 目   錄 vii 圖 目 錄 xii 表 目 錄 xvi 第一章 緒論 1 1-1研究背景 1 1-2研究目的 3 1-3研究內容 4 第二章 文獻回顧 5 2-1高吸水性水膠簡介 5 2-2水膠之吸水原理 6 2-3影響水膠吸水能力之因素 8 2-3-1吸水官能基對水的親和力 8 2-3-2離子強度 8 2-3-3水膠的交聯密度 9 2-3-4水溶液的pH值 9 2-3-5鹽水溶液的影響 10 2-4水膠的相關應用 11 2-4-1應答型水膠 11 2-4-2智慧型水膠 12 2-5水泥 13 2-5-1波特蘭水泥之組成 13 2-5-2水泥之水化 14 2-5-3混凝土收縮變形的種類 15 2-6混凝土的養護 16 2-6-1外部養護(external curing) 16 2-6-2內部養護(internal curing) 17 第三章 水膠之合成與實驗流程 19 3-1實驗流程 19 3-2實驗材料與實驗設備 20 3-2-1藥品 20 3-2-2水泥 21 3-2-3實驗儀器 22 3-3實驗方法 23 3-3-1 Pasp之合成 23 3-3-2 Pasp/PAM水膠合成 24 3-3-3 PPAA合成 25 3-3-4 PPAA/PAM/PEG水膠合成 26 3-4聚合物結構分析與鑑定 27 3-4-1紅外線(IR)光譜分析 27 3-4-2核磁共振(NMR)光譜 27 3-4-3水膠吸水率之測量 27 3-4-4水膠釋水之測量 27 3-5聚合物Pasp/PAM對水泥漿之性質分析 28 3-5-1水泥漿體之拌製 28 3-5-2水泥漿體內部濕度之測量 28 3-5-3水泥漿凝結時間測試 28 3-5-4熱示差掃瞄卡量計(DSC) 28 3-5-5粉末X光繞射分析(Powder XRD)儀 29 3-6聚合物Pasp/PAM對水泥砂漿之性質分析 30 3-6-1水泥砂漿試體之拌製 30 3-6-2水泥砂漿試體重量損失量之測量 30 3-6-3水泥砂漿試體抗壓強度之測量 30 3-6-4水泥砂漿試體溼度之測量 31 3-6-5水泥砂漿長度變化之測量 31 3-7實驗配比 32 第四章 結果與討論 35 4-1聚合物之結構鑑定 35 4-1-1 Pasp結構鑑定 35 4-1-2 Pasp/PAM結構鑑定 35 4-2反應條件對Pasp/PAM水膠吸水率之影響 37 4-2-1單體不同比例合成Pasp/PAM水膠對吸水率影響 37 4-2-2交聯劑劑量合成Pasp/PAM水膠對吸水率影響 39 4-2-3起始劑濃度對Pasp/PAM水膠吸水率之影響 40 4-2-4反應溫度對Pasp/PAM水膠吸水率之影響 42 4-3鹽水溶液及pH值對於水膠吸水率之影響 43 4-3-1鹽水溶液濃度對水膠吸水率之影響 44 4-3-2 pH值對水膠吸水率之影響 47 4-3-3水膠在孔隙溶液中的吸水率 49 4-4水膠對水泥漿性質的影響 51 4-4-1 XRD分析(1) 51 4-4-2 DSC分析(1) 56 4-4-3水膠對水泥漿凝結時間影響 60 4-5水膠對水泥砂漿性質的影響 61 4-5-1水膠劑量對水泥砂漿重量損失影響 61 4-5-2水膠預吸水水量對水泥砂漿重量損失影響 63 4-5-3水膠劑量對水泥砂漿長度變化之影響 65 4-5-4水膠劑量對水泥砂漿抗壓強度影響 67 4-6 PPAA/PAM水膠添加PEG的影響 69 4-6-1 PPAA/PAM/PEG水膠結構鑑定 69 4-6-2 PEG合成比例對PPAA/PAM水膠吸水率之影響 71 4-6-3 PEG比例對於PPAA/PAM/PEG水膠在pore solution中吸水率的影響 73 4-6-4 XRD分析(2) 75 4-6-5 DSC分析(2) 77 4-6-6 PPAA/PAM/PEG水膠劑量對凝結時間之影響 80 4-6-7 PEG添加方式對水泥砂漿重量損失的影響 81 4-6-8 PEG添加方式對水泥砂漿長度變化的影響 84 4-6-9 PEG添加方式對於水泥砂漿抗壓強度的影響 87 第五章 結論 90 第六章 參考資料 92 圖 目 錄 圖2-1水膠吸水示意圖 7 圖2-2 Ca2+與水膠內-COO-官能基產生螯合 10 圖2-3 水泥成分在水化過程的變化 18 圖3-1實驗流程圖 19 圖4- 1 Pasp 1H NMR光譜 36 圖4- 2 AM、Pasp、Pasp/PAM IR光譜圖 36 圖4-3 Pasp/PAM比例對於Pasp/PAM水膠在水溶液中吸水率的影響 38 圖4-4 MBA劑量對於Pasp/PAM水膠在水溶液中吸水率的影響 39 圖4-5 APS劑量對於Pasp/PAM水膠在水溶液中吸水率的影響 41 圖4-6反應溫度對於Pasp/PAM水膠在水溶液中吸水率的影響 42 圖4-7鹽水濃度對於Pasp/PAM水膠在鹽水中吸水率的影響 45 圖4-8 Pasp/PAM在純水NaOH和Ca(OH)2溶液中的IR光譜圖 45 圖4-9 P1222水膠浸泡於0.1M NaCl(aq)後的SEM (×600)圖 46 圖4-10 P1222水膠浸泡於0.1M NaCl(aq)後的SEM (×1200)圖 46 圖4-11 P1222水膠浸泡於0.1M CaCl2(aq)後的SEM (×600)圖 46 圖4-12 P1222水膠浸泡於0.1M CaCl2(aq)後的SEM (×1200) 圖 46 圖4-13 P1222水膠浸泡於water後的SEM (×600)圖 46 圖4-14 P1222水膠浸泡於water後的SEM (×1200) 圖 46 圖4-15 pH值對於Pasp/PAM水膠在吸水率的影響 48 圖4-16 Pasp的滴定曲線圖 48 圖4-17浸泡時間對於P1222水膠吸水率的影響 50 圖4-18 P1222水膠在pore solution不同浸泡時間的IR光譜圖 50 圖4-19添加不同劑量Pasp/PAM水膠水泥漿的XRD圖(齡期3天) 52 圖4-20添加不同劑量Pasp/PAM水膠水泥漿的XRD圖(齡期7天) 52 圖4-21添加不同劑量Pasp/PAM水膠水泥漿的XRD圖(齡期28天) 53 圖4-22未添加Pasp/PAM水膠水泥漿的XRD圖(齡期3、7、28天) 53 圖4-23添加0.1wt% Pasp/PAM水膠水泥漿的XRD圖(齡期3、7、28天) 54 圖4-24添加0.2wt% Pasp/PAM水膠水泥漿的XRD圖(齡期3、7、28天) 54 圖4-25添加0.4wt% Pasp/PAM水膠水泥漿的XRD圖(齡期3、7、28天) 55 圖4-26未添加Pasp/PAM水膠水泥漿的DSC圖(齡期3、7、28天) 57 圖4-27添加0.1wt% Pasp/PAM水膠水泥漿的DSC圖(齡期3、7、28天) 57 圖4-28添加0.2wt% Pasp/PAM水膠水泥漿的DSC圖(齡期3、7、28天) 58 圖4-29添加0.4wt% Pasp/PAM水膠水泥漿的DSC圖(齡期3、7、28天) 58 圖4-30 P1222 Pasp/PAM水膠劑量對於氫氧化鈣含量的影響 59 圖4-31 Pasp/PAM水膠添加量對於砂漿中內部濕度的影響 59 圖4-32 P1222 Pasp/PAM水膠劑量對於水泥漿凝結時間的影響 60 圖4-33齡期對於砂漿重量損失的影響 62 圖4-34 Pasp/PAM水膠添加量對於砂漿重量損失的影響 62 圖4-35齡期對於砂漿重量損失的影響 64 圖4-36 Pasp/PAM水膠預吸水水量對於砂漿重量損失的影響 64 圖4-37齡期對於砂漿乾縮量的影響 66 圖4-38 Pasp/PAM水膠劑量對於砂漿乾縮量的影響 66 圖4-39齡期對於砂漿抗壓強度的影響 68 圖4-40 Pasp/PAM水膠劑量對於砂漿抗壓強度的影響 68 圖4-41 PAM、PPAA、PEG和PPAA-PAM-PEG的IR光譜 70 圖4-42不同PEG比例對於PPAA/PAM/PEG水膠在水溶液中飽和吸水率的影響 72 圖4-43 PEG劑量對於PPAA/PAM/PEG水膠在pore solution中釋水率的影響 74 圖4-44添加不同PEG劑量水膠水泥漿的XRD圖(齡期3天) 75 圖4-45添加不同PEG劑量水膠水泥漿的XRD圖(齡期7天) 76 圖4-46添加不同PEG劑量水膠水泥漿的XRD圖(齡期28天) 76 圖4-47添加不同PEG劑量水膠水泥漿的DSC圖 (齡期3天) 77 圖4-48添加不同PEG劑量水膠水泥漿的DSC圖 (齡期7天) 78 圖4-49添加不同PEG劑量水膠水泥漿的DSC圖 (齡期28天) 78 圖4-50 PEG水膠劑量對於氫氧化鈣含量的影響 79 圖4-51 PEG水膠劑量對於凝結時間的影響 80 圖4-52內添加PPAA/PAM/PEG的水膠之水泥砂漿在不同齡期的重量損失 82 圖4-53內添加不同含量PPAA/PAM/PEG的水膠之水泥砂漿的重量損失 82 圖4-54外添加PPAA/PAM/PEG的水膠對水泥砂漿在不同齡期的重量損失 83 圖4-55外添加不同含量PPAA/PAM/PEG的水膠之水泥砂漿的重量損失 83 圖4-56內添加PPAA/PAM/PEG的水膠之水泥砂漿在不同齡期的乾縮量 85 圖4-57內添加不同含量PPAA/PAM/PEG的水膠之水泥砂漿的乾縮量 85 圖4-58外添加PPAA/PAM/PEG的水膠之水泥砂漿在不同齡期的乾縮量 86 圖4-59外添加不同含量PPAA/PAM/PEG的水膠之水泥砂漿的乾縮量 86 圖4-60內添加PPAA/PAM/PEG的水膠之水泥砂漿在不同齡期的抗壓強度 88 圖4-61內添加不同含量PPAA/PAM/PEG的水膠之水泥砂漿的抗壓強度 88 圖4-62外添加PPAA/PAM/PEG的水膠之水泥砂漿在不同齡期的抗壓強度 89 圖4-63外添加不同含量PPAA/PAM/PEG的水膠之水泥砂漿的抗壓強度 89 表 目 錄 表2-1卜特蘭水泥之主要成份 13 表2-2水泥水化反應之方程式 14 表3-1水泥之組成與性質 21 表3-2水膠合成之條件 32 表3-3水泥砂漿拌合之條件 33 表3-4水泥漿拌合之條件 34 表3-5水泥漿凝結時間之條件 34 表4-1 Pore solution 之組成 49 表4-2水泥漿體中各成分的XRD數據 55 表4-3各水化產物之吸收峰位置 56 表4-4添加不同P1222水膠劑量的氫氧化鈣積分值 59 表4-5 PEG水膠合成比例 71 表4-6添加不同PEG劑量的氫氧化鈣積分值 79

    1. R. C. Burr, G. F. Fanta, and W. M. Doane, Graft polymerization of starch with mixtures of acrylonitrile and 2-acrylamido-2-methylpropanesulfonic acid. Journal of Applied Polymer Science, 1979. 24(5): p. 1387-1390.

    2. O. M. Jensen, P. F. Hansen, Water-entrained cement-based materials II. Experimental observations. Cement and Concrete Research, 2002. 32(6): p. 973-978.

    3. J. T. Zhang, R. Bhat, K. D. Jandt, Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels. Acta Biomaterialia 5 (2009) 488–497
    with enhanced responsive properties

    4. A. S. Hoffman, Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 2002. 54(1): p. 3-12.

    5. X. Z. Zhang, Y. Y. Yang, T. S. Chung, K. X. Ma, Preparation and Characterization of Fast Response Macroporous Poly(N-isopropylacrylamide) Hydrogels. Langmuir, 2001. 17(20): p. 6094-6099.

    6. C. H. Yuana, S. B. Lina, B. Liua, A. R. Kea, Z. L. Quana, Synthesis and characterization of poly(4-acetyl acryloyl ethyl acetate-co-acrylicacid) novel temperature/pH-sensitive hydrogels. Sensors and Actuators B 140 (2009) 155–161

    7. 佘勝雄, 利用二階段自由基共聚合製備酸鹼應答型水膠及性質探討. 中興大學化學工程研究所, 2002.

    8. X. P. Chen, G. R. Shan, J. Huang, Z.M. Huang, Z. X. Weng, Synthesis and properties of acrylic-based superabsorbent. Journal of Applied Polymer Science, 2004. 92(1): p. 619-624.

    9. A. Pourjavadi, A. S. Barzegar, G. R. Mahdavinia, MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohydrate Polymers, 2006. 66(3): p. 386-395.

    10. P. S. K. Murthy, Y. M. Mohan, J. Sreeramulu, and K. M. Raju, Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): Preparation, swelling and diffusion characteristics evaluation, Reactive & Functional Polymers, 66 (2006), 1482–1493.

    11. J. Baker, H. Blanch, J. Prausnitz, Swelling properties of acrylamide-based ampholytic hydrogels: Comparison of experiment with theory. POLYMER-LONDON-, 1995. 36: p. 1061-1061.

    12. Y. S. Zhou , D. Z. Yang , X. Y. Gao , X. M. Chen , Q. Xu, F. M. Lu, J. Nie , Semi-interpenetrating polymer network hydrogels based on water-solubleN-carboxylethyl chitosan and photopolymerized poly (2-hydroxyethylmethacrylate). Carbohydrate Polymers 75 (2009) 293–298.

    13. B. L. Guo, Q. Y. Gao, Preparation and properties of a pH/temperature-responsivecarboxymethyl chitosan/poly(N-isopropylacrylamide)semi-IPNhydrogel for oral delivery of drugs. Carbohydrate Research 342 (2007) 2416–2422

    14. Y. Zheng, P. Li, J. Zhang, and A. Wang, Study on superabsorbent composite XVI.Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites, European Polymer Journal, 43 (2007), 1691–1698.

    15. A. Pourjavadi, A. M. Harzandi, H. Hosseinzadeh, Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air, European Polymer Journal 40 (2004), 1363–1370.

    16. Y. Zhao, J. Kang, T. W. Tan, Salt-, pH- and temperature-responsive semi-interpenetrating polymernetwork hydrogel based on poly(aspartic acid) and poly(acrylic acid). Polymer 47 (2006) 7702~7710.

    17. A. Pourjavadi, and H. Salimi, New Protein-Based Hydrogel with Superabsorbing Properties: Effect of Monomer Ratio on Swelling Behavior and Kinetics, Ind. Eng. Chem. Res, 47 (2008), 9206–9213.

    18. R. K. Dhir, P. C. Hewlett, J .S. Lota, T. D. Dyer, An Investigation Into the Feasibility of Formulating Self-Cure Concrete ,Materials and Structures ,174, 27,(1994), 606-615.

    19. S. P. Zhao, M. G. Cao, H. Li, L. Y. Li, W. L. Xu, Synthesis and characterization of thermo-sensitive semi-IPN hydrogels basedon poly(ethylene glycol)-co-poly(e-caprolactone) macromer,N-isopropylacrylamide, and sodium alginate. Carbohydrate Research 345 (2010) 425–431.

    20. C. Jolicoeur and M. A. Simard, Chemical admixture-cement interactions: Phenomenology and physico-chemical concepts, Cem. Concr. Composites 20 (1998), 87–101.

    21. B. B. Mandal, S. N. Kapoor, S. C. Kundu, Silk fibroin/polyacrylamide semi-interpenetrating network hydrogelsfor controlled drug release. Biomaterials 30 (2009) 2826–2836.

    22. C. T. Huynh, M. K. Nguyen, D. P. Huynh, S. W. Kim, D. S. Lee, pH/temperature-sensitive 4-arm poly(ethylene glycol)-poly(amino urethane)copolymer hydrogels. Polymer 51 (2010) 3843~3850.

    23. P. C. Mishra, V. K. Singh, K. K. Narang, N. K. Singh, Effect of carboxymethyl-cellulose on the properties ofcement. Materials and Engineering, A 357 (2003), 13–19.

    24. H. L. Wei, Z. Yang, L. M. Zheng, Y. M. Shen, Thermosensitive hydrogels synthesized by fast Diels–Alder reaction in water. Polymer 50 (2009) 2836–2840.

    25. H. L. Wei, Z. Yang, H. J. Chu, J. Zhu, Z. C. Li, J. S. Cui, Facile preparation of poly(N-isopropylacrylamide)-based hydrogels via aqueous
    DielseAlder click reaction. Polymer 51 (2010) 1694~1702.

    26. D. Y. Teng, Z. M. Wu, X. G. Zhang, Y. X. Wang, C. Zheng, Z. Wang, C. X. Li, Synthesis and characterization of in situ cross-linked hydrogel based on self-assembly of thiol-modified chitosan with PEG diacrylate using Michael type addition. Polymer 51 (2010) 639–646.

    27. 黃兆龍,混凝土性質與行為,詹氏書局,台北 (1997)

    28. Z. C. Grasley, D. A. Lange, Thermal dilation and internal relative humidity of hardened cement paste, Materials and Structures, 40 (2007), 311–317.

    29. T. A. Hammer and E. J.Sellevold, Cracking in high performance concrete before setting, International Symposium on High-performance and Reactive Power Concertes, (1998), 1-16.

    30. 李文宏, 光纖量測技術於水泥質材料的熱膨脹系數與自體收縮之研究. 臺灣大學土木工程學研究所,( 2004).

    31. A. A. Almusallam, Effect of environmental conditions on the properties of fresh and hardened concrete. Cement and Concrete Composites, 2001. 23(4-5): p. 353-361.

    32. P. Lura, O. M. Jensen, K. V. Breugel, Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cement and Concrete Research, 2003. 33(2): p. 223-232.

    33. O. M. Jensen, P. F. Hansen, Water-entrained cement-based materials I. Principles and theoretical background. Cement and Concrete Research, 2001. 31(4): p. 647-654.

    34. A. Pourjavadi, A. Harzandi, H. Hosseinzadeh, Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. European Polymer Journal, 2004. 40(7): p. 1363-1370.

    35. W. Zhihong, H. Yucui, H. Yuan, Research on increasing effect of solution polymerization for cement-based composite. Cement and Concrete Research, 2003. 33(10): p. 1655-1658.

    36. E. Knapen, D. V. Gemert, Cement hydration and microstructure formation in the presence of water-soluble polymers. Cement and Concrete Research, 2009. 39(1): p. 6-13.

    37. K. Kovler, S. Zhutovsky, Overview and future trends of shrinkage research. Materials and Structures, 2006. 39(9): p. 827-847.

    38. O. M. Jensen, P. Lura, Techniques and materials for internal water curing of concrete. Materials and Structures, 2006. 39(9): p. 817-825

    39. G. M. Eichenbaum, P. F. Kiser, D. Shah, S. A. Simon, D. Needham, Investigation of the swelling response and drug loading of ionic microgels: The dependence on functional group composition. Macromolecules, 1999. 32(26): p. 8996-9006.

    40. E.A.B. Koenders, K. V. Breugel, Numerical modelling of autogenous shrinkage of hardening cement paste. Cement and Concrete Research, 1997. 27(10): p. 1489-1499.

    41. 混凝土的養護方式,國產實業公司
    http://www.gdc.com.tw/modules/tinyd0/index.php?id=7#05

    42. C. Y. Rha, C. E. Kim, C. S. Lee, K. I. Kim, S. K. Lee, Preparation and characterization of absorbent polymer-cement composites. Cement and Concrete Research, 1999. 29(2): p. 231-236.

    43. W. Sha, E. A. O'Neill, Z. Guo, Differential scanning calorimetry study of ordinary Portland cement. Cement and Concrete Research, 1999. 29(9): p. 1487-1489.

    44. A. M. Mathur, K. F. Hammonds, J. Klier, A. B. Scranton , Equilibrium swelling of poly(methacrylic acid-g-ethylene glycol) hydrogels Effect of swelling medium and synthesis conditions. Journal of Controlled Release 54 (1998) 177–184.

    45. 葉華 , 趙建青, 張宇, 吸水樹脂水泥基材料自養護外加劑的研究. 華南理工大學學報, 2003. 31(11): p. 41-44.

    46. R. K. Dhir, P. C. Hewlett, R. K.Dhir, Durability of self-cure concrete. Cem.Concr, Res., 25, (1995) 1153-1158.

    47. R. K. Dhir, P. C. Hewlett, R. K.Dhir, Mechanisms of water retention in cement pastes containing a self-curing agent. Mag. Concr. Res.,50(1998) 85-90.

    48.吳季懷,林建明,魏月琳,林松柏,高吸水保水材料,化學工出版社,(2005).

    下載圖示
    QR CODE