研究生: |
林烝祺 |
---|---|
論文名稱: |
以FPGA實現可自動對焦之 3D數位全像重建系統 The Implementation of Autofocusing System by FPGA for 3D Digital Holography Reconstruction |
指導教授: | 黃文吉 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 現場可程式化閘陣列 、菲涅耳轉換 、自動焦距校正 |
英文關鍵詞: | FPGA, Fresnel Transform, Autofocusing |
論文種類: | 學術論文 |
相關次數: | 點閱:291 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要目的為在FPGA(Field Programmable Gate Array)平台提出一個硬體電路架構以實現全像圖的3D影像重建,此架構提供3D影像還原其相位所需的繞射計算以及相位展開功能,並且能夠對影像還原的焦距進行自動校正。此架構具有兩大優勢,其一為解決現存以GPU為主的3D影像還原系統功率消耗較高的缺點。其二為提供大多3D影像重建系統缺少的自動焦距校正功能。此架構中利用硬體進行菲涅耳轉換(Fresnel Transform)以執行繞射計算,自動焦距校正的部分則使用Normalized Variance數值來評估不同焦距下的影像清晰度。
在論文中我們將以FPGA來實現上述之硬體架構,並實際量測此架構執行之效能與功耗,根據實驗結果,本論文提出的架構較GPU或其他實現方式更具有可攜性、低功率消耗以及高速計算的優點。對於嵌入式數位全像顯微鏡(Embedded Digital Holographic Microscopy)等相關應用下是相當適合的設計架構。
[1] U. Schnars and W.P. Jueptner, Digital Holography, Springer-Verlag, 2005.
[2] M. Kim, L. Yu and C. Mann, Interference techniques in digital holography, J. Opt. A: Pure Appl. Opt., Vol. 8, pp. S518-S523, 2006.
[3] L. Ahrenberg, A. J. Page, B. M. Hennelly, J. B. McDonald, and T. J. Naughton, Using Commodity Graphics Hardware for Real-Time Digital Hologram View-Reconstruction, IEEE Journal of Display Technology, Vol. 5, pp.111-119, 2009.
[4] N. Pandey, D. P. Kellya, T. J. Naughtona and B. M. Hennellya, Speed up of Fresnel transforms for digital holography using precomputed chirp and GPU processing, Proc. SPIE, Vol. 7442, 2009.
[5] Z. Zhu, M. Sun, H. Ding, S. Feng and S. Nie, Fast numerical reconstruction of digital holography based on graphic processing unit, Proc. IEEE Pacific Rim Conference on Lasers and Electro-Optics, 2009.
[6] T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi and T. Ito, Real-time digital holographic microscopy using the graphic processing unit, Opt. Express, Vol. 16, pp.11776-11781, 2008.
[7] T. Nishitsuji, T. Shimobaba, T. Sakurai, N. Takada, N. Masuda, and T. Ito, Fast calculation of Fresnel diffraction calculation using AMD GPU and OpenCL, OSA Technical Digest, 2011.
[8] M. Dogar, H. A. Ilhan, and M. Ozcan, Real-time, auto-focusing digital holographic microscope using graphics processors, Review of Scientific Instruments, Vol. 84, 2013.
[9] A. C. Atoche, M. P. Cortes, J. V. Castillo, R. A. Ensenat, FFT Implementation for Electronic Holograms using Field Programmable Gate Array, Proceedings of the 6th International Caribbean Conference on Devices, Circuits and Systems, Mexico, 2006.
[10] N. Masuda, T. Ito, K. Kayama, H. Kono, S. Satake, T. Kunugi and K. Sato, Special purpose computer for digital holographic particle tracking velocimetry, Opt. Express, Vol. 14, pp.587-592, 2006.
[11] Y. Abe, N. Masuda, H. Wakabayashi, Y. Kazo, T. Ito, S. Satake, T. Kunugi, and K. Sato, Special purpose computer system for flow visualization using holography technology, Opt. Express, Vol. 16, pp.7686-7692, 2008.
[12] R. Veitch, D. C. Hendry, and J. Watson, Reconfigurable Hardware Applied to Holographic Reconstruction, Proc. IEEE OCEANS, Aberdeen, Scotland, 2007.
[13] T. Lenart, M. Gustafsson and V. Owall, A Hardware Acceleration Platform for Digital Holographic Imaging, Journal of Signal Process Syst., Vol. 52, pp.297-311, 2008.
[14] Y. Sun, S. Duthaler, and B. J. Nelson, Autofocusing in Computer Microscopy: Selecting the Optimal Focus Algorithm, Microscopy Research and Technique, Vol.65, pp.139–149, 2004.
[15] S. Lee, J. Y. Lee, W. Yang, and D. Y. Kim, Autofocusing and edge detection schemes in cell volume measurements with quantitative phase microscopy, Opt. Express, Vol. 17, pp.6476-6486, 2009.
[16] Y. Sun, S. Duthaler, and B. J. Nelson, Autofocusing Algorithm Selection in Computer Microscopy, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.419-425, 2005.
[17] Dennis C. Ghiglia, Gary A. Mastin, Louis A. Romero, Cellular-automata method for phase unwrapping, Sandia National Laboratories, Albuquerque, New Mexico 87185, 1984.
[18] Altera Corporation. Quartus II Handbook Ver 13.0, 2013; Available online.
[19] S. Rajan, S. Wang, R. Inkol, A. Joyal, “Efficient Approximations for the Arctangent Function,” IEEE Signal Processing Magazine, vol. 23 pp. 108-111, 2006.
[20] 陳煥元, 數位全像顯微鏡之高速相位展開法則電路於FPGA上之實現, 國立臺灣師範大學資訊工程研究所, 2014.
[21] J. W. Goodman and R. W. Lawrence, Digital image formation from electronically detected holograms, Appl. Phys. Lett. vol. 11, pp. 77–79, 1967.
[22] Altera Corporation, FFT MegaCore Function User Guide, 2011.
[23] Y. Jiao, H. Lin, P. Balaji, W. Feng, Power and Performance Characterization of Computational Kernels on the GPU, Proc. IEEE/ACM Int’l Conference on Green Computing and Communications, pp.221-228, 2010.