簡易檢索 / 詳目顯示

研究生: 張仲樸
Chang, Chung-Pu
論文名稱: 運用遊戲化6E模式之物聯網實作課對高中生學習態度、學習成效及行為模式影響之研究
A Study on the Impact of Using Gamification 6E Model for IoT Hands-on Activity to High School Students’ Learning Attitude, Learning Effectiveness and Behavior Pattern
指導教授: 蕭顯勝
Hsiao, Hsien-Sheng
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 202
中文關鍵詞: 物聯網實作教學6E模式遊戲化運算思維學習動機自我效能行為模式
英文關鍵詞: Internet of Things, hands-on activity, 6E model, gamification, computational thinking, learning motivation, self-efficacy, behavior pattern
DOI URL: http://doi.org/10.6345/NTNU202001622
論文種類: 學術論文
相關次數: 點閱:311下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新課綱將資訊科技設為中學階段必修科目並推動運算思維教育,同時強調STEM這種橫向跨領域知識的重要性。物聯網可作為一種STEM教學,其作品整合了電路、物理、機械、資訊等領域的綜合性知識與技術之應用。
    然而,一般的資訊科技教師是以專家程式設計思考程序教導學生編寫程式,相較之下,6E模式更能提升學習者設計與探究的能力,搭配實作教學活動可以整合理論知識與實作經驗,但在6E模式下學生的參與度和學習動機就成為影響學習的重要因素。本研究將遊戲化元素(故事、得分、排行榜、挑戰)結合6E模式,提出「遊戲化6E模式」,使學生在實作過程中更積極參與並能累積成就感,進而獲得更好的學習表現。
    本研究透過準實驗設計探討不同教學模式(遊戲化6E模式、6E模式、專家程式設計思考程序)對於高中生學習態度(學習動機、自我效能)、學習成效(物聯網知識、運算思維、實作能力)之影響,並透過行為編碼後進行序列分析,觀察學習者在實作活動中的行為轉換模式。透過共變數分析,結果發現在學習態度上,學習動機與自我效皆達顯著差異,遊戲化6E模式組別之表現最佳;在學習成效上物聯網知識、實作能力達顯著差異,遊戲化6E模式組別之表現最佳,運算思維則未達顯著差異;透過行為序列分析,發現不同教學模式的學生在物聯網實作課程,皆需要頻繁地和老師進行雙向溝通,並需要與組員進行分工實作;採用遊戲化6E模式組別之學生為賺取得分獲而採取更為積極的互動方式,會在討論後展開協同實作,並主動詢問或幫助其他同學,具有更多與他人雙向互動之行為轉換達顯著,佐以說明學生有更良好的學習動機、態度與成效。

    12-Year Baisc Education Curriculum Outline sets information technology as a compulsory subject in the secondary education and promotes computational thinking. At the same time, it emphasizes the importance of horizontal and cross-domain knowledge such as STEM. The Internet of Things can be used for STEM teaching. Its integrates the comprehensive knowledge and application of technology in the fields of circuits, physics, machinery, and information.
    The general information technology teacher teaches students to program using the “Expert programming thinking process”. In contrast, the “6E model” can improve learners' design and inquiry abilities. With hands-on activities, 6E model can integrate theoretical knowledge and hands-on experience. However, under the 6E mode, students’ participation and learning motivation have become important factors affecting learning. So, this study proposes the “Gamification 6E model”, combines gamification elements (story, scores, rankings, challenges) with the 6E model, in order to enable learners to participate more actively in the hands-on process and accumulate a sense of accomplishment, thereby gaining better learning performance.
    This study explores the impact of different teaching model (Gamification 6E model, 6E model, Expert programming thinking process) on high school students' learning attitude (learning motivation, self-efficacy) and learning effectiveness (IoT knowledge, computational thinking, hands-on ability) through quasi-experimental design. And through the sequence analysis after the behavior coding, observe the learner's behavior transformation in the hands-on activities. The ANCOVA results on learning attitudes found that there are significant differences in learning motivation and self-efficacy, and the gamification 6E model performs best of all. In terms of learning effectiveness results found that there are significant differences in IoT knowledge and hands-on ability, and the gamification 6E model performs the best, but there is no significant difference in computational thinking. The behavior sequence analysis result show that all of the students require frequent two-way communication with the teacher, and need to implement division of labor with the group members in different teaching model. Students in the “Gamification 6E model” group adopt a more active interactive way to earn points, and will start collaborative hands-on after discussion, and actively ask or help other students. There are more significant two-way interactions with other behaviors, which shows that students have better learning motivation, attitude and effectiveness.

    中文摘要 i 英文摘要 iii 目錄 v 表次 ix 圖次 xiii 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 5 第三節 待答問題 6 第四節 研究流程 7 第五節 名詞解釋 9 第二章 文獻探討 15 第一節 STEM與物聯網 15 第二節 實作教學 18 第三節 運算思維 21 第四節 6E模式 24 第五節 遊戲化 27 第六節 學習動機 31 第七節 自我效能 34 第八節 行為模式 36 第九節 文獻評析 38 第三章 研究方法 43 第一節 研究架構 43 第二節 研究對象 44 第三節 實驗設計與實施 45 第四節 教學活動設計 48 第五節 研究工具 58 第六節 資料處理與分析 66 第四章 研究結果與討論 69 第一節 不同教學模式對學習態度(學習動機)之影響 69 第二節 不同教學模式對學習態度(自我效能)之影響 76 第三節 不同教學模式對學習成效(物聯網知識)之影響 82 第四節 不同教學模式對學習成效(運算思維)之影響 86 第五節 不同教學模式對學習成效(實作能力)之影響 89 第六節 不同教學模式對行為模式之影響 98 第七節 學習態度與學習成效間之相關性 112 第五章 結論與建議 117 第一節 結論 117 第二節 建議 121 第三節 研究範圍與限制 123 參考文獻 125 一、中文部分 125 二、外文部分 126 附錄 143 附錄一 教材動機量表 145 附錄二 程式設計自我效能量表 147 附錄三 物聯網知識評量 148 附錄四 運算思維測驗 151 附錄五 學習單一:《Arduino程式設計入門》 167 附錄六 學習單二:《感測器與流程圖》 168 附錄七 學習單三:《物聯網專題設計》 169 附錄八 運用遊戲化6E模式之物聯網實作課程教案 176 附錄九 運用6E模式之物聯網實作課程教案 185 附錄十 運用專家程式設計思考程序之物聯網實作課程 194

    一、中文部分
    吳岱芸(2015)。從遊戲到遊戲化:行銷溝通遊戲化理論初探。新聞學研究,124,215-251。
    吳明隆(2007)。SPSS 操作與應用: 變異數分析實務。台北:五南圖書。
    周家卉(2008)。實作評量在生活科技課程實施之探討。生活科技教育月刊,41(7),51-83。
    林育安(2019)。運用 6E 模式進行 STEM 機電整合活動中對高中生學習成效之研究。國立臺灣師範大學科技應用與人力資源發展學系碩士論文,未出版,台北市。
    林育慈、吳正己(2016)。運算思維與中小學資訊科技課程。教育脈動,6,5-20。
    林邵珍(2003)。運用ARCS動機設計模式之生活科技教學。生活科技教育,36(4),52-59。
    俞錚蓉、林佳勳、陳盈幸、林東興(2015)。空中學院網路媒體教學與課堂面授教學之ARCS學習動機差異分析。數位與開放學習期刊,7,68-79。
    范斯淳、游光昭(2016)。科技教育融入STEM課程的核心價值與實踐。教育科學研究期刊,61(2),153-183。
    孫春在(2013)。遊戲式數位學習。台北:高等教育。
    張玉山、楊雅茹(2014)。STEM教學設計之探討:以液壓手臂單元為例。科技與人力教育季刊,1(1),2-17。
    張春興(1994)。教育心理學-三化取向的理論與實踐。台北:東華書局。
    張春興(2003)。教育心理學:三化取向的理論與實踐(修訂版)。台北:東華書局。
    張春興(2006)。張式心理學辭典。台北:東華書局。
    教育部(2014)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校-科技領域。台北:教育部。
    教育部(2019)。十二年國民基本教育課程綱要綜合型高級中等學校-科技領域。台北:教育部。
    教育部(2019)。高級中等學校學生學習歷程檔案作業要點。台北:教育部。
    陳勇汀(2017)。行為順序檢定:滯後序列分析/Behavior Analysis:Lag Sequential Anaylysis。取自http://blog.pulipuli.info/2017/10/behavior-analysis-lag-sequential.html
    黃子榕、林坤誼(2014)。職前教師於STEM實作課程的知識整合行為研究。科技與人力教育季刊,1(1),18-39。
    葉佩君、郭建良(2018)。遊戲化學習機制與模式的設計與成效初探-以某高職為例。中山管理評論 ,26(3),415-452。
    劉競勻(2019)。遊戲化互動機制程度對於擴增實境學習應用程式之學習動機與互動滿意度研究。國立臺北教育大學數位科技設計學系(含玩具與遊戲設計碩士班)碩士論文,未出版,台北市。
    蔡進雄(2019)。開發板實作課程對國中學生在程式學習興趣與物聯網知識之影響。國立高雄師範大學工業科技教育學系碩士論文,未出版,高雄市。

    二、外文部分
    Al-Azawi, R., Al-Faliti, F., & Al-Blushi, M. (2016). Educational gamification vs. game based learning: Comparative study. International Journal of Innovation, Management and Technology, 7(4), 132-136.
    Aldowah, H., Rehman, S. U., Ghazal, S., & Umar, I. N. (2017, September). Internet of Things in higher education: a study on future learning. In Journal of Physics: Conference Series, 892(1), 12-17.
    Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 computational thinking curriculum framework: Implications for teacher knowledge. Journal of Educational Technology & Society, 19(3), 47-57.
    Arabacioglu, T., & Akar-Vural, R. (2014). Using Facebook as a LMS?. Turkish Online Journal of Educational Technology, 13(2), 202-214.
    Aşıksoy, G., Özdamlı, F. (2016) Flipped classroom adapted to the ARCS model of motivation and applied to a physics course. Eurasia Journal of Mathematics, Science & Technology Education, 12(6), 1589-1603.
    Askar, P., & Davenport, D. (2009). An investigation of factors related to self-efficacy for Java Programming among engineering students. Online Submission, 8(1), 26–32.
    Asunda, P. A. (2012). Standards for technological literacy and STEM education delivery through career and technical education programs. Journal of Technology Education, 23(2), 44-60.
    Bakeman, R., & Gottman, J. M. (1997). Observing interaction. An introduction to sequential analysis. New York, NY: Cambridge University Press.
    Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.
    Bandura, A. (1994). Self-efficacy. In V. S. Ramachaudran (Ed.), Encyclopedia of human behavior (pp. 71–81). New York: Academic.
    Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: WH Freeman and Company.
    Banfield, J., & Wilkerson, B. (2014). Increasing student intrinsic motivation and self-efficacy through gamification pedagogy. Contemporary Issues in Education Research (CIER), 7(4), 291-298.
    Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what is the role of the computer science education community?. Inroads, 2(1), 48-54.
    Barry, N. (2014). The ITEEA 6E learning byDeSIGN™ Model. Technology and Engineering Teacher, 73(6), 14-19.
    Bergey, B. W., Ketelhut, D. J., Liang, S., Natarajan, U., & Karakus, M. (2015). Scientific inquiry self-efficacy and computer game self-efficacy as predictors and outcomes of middle school boys' and girls' performance in a science assessment in a virtual environment. Journal of Science Education and Technology, 24(5), 696-708.
    Berland, M., Lee, V. R. (2011) Collaborative strategic board games as a site for distributed computational thinking. International Journal of Game-Based Learning, 1(2), 65-81.
    Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Compu tational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157.
    Besemer, S. P., & Treffinger, D. J. (1981). Analysis of creative products: Review and synthesis. The Journal of Creative Behavior, 15(3), 158-178.
    Bohlin, R. M., Milheim, W. D., & Viechnicki, K. J. (1993). The development of a model for the design of motivational adult instruction in higher education. Journal of Educational Technology Systems, 22(1), 3-17.
    Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 annual meeting of the American Educational Research Association, Vancouver, Canada (pp. 1-25).
    Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Carlson Powell, J., Westbrook, A., & Landes, N. (2006). The BSCS 5E Instructional Model: Origins, Effectiveness and Applications. Retrieved from http://www.bscs.org/bscs-5e-instructional-model
    Chang, Y. S., Chien, Y. H., Lin, H. C., Chen, M. Y., & Hsieh, H. H. (2016). Effects of 3D CAD applications on the design creativity of students with different representational abilities. Computers in Human Behavior, 65, 107-113.
    Chen, J. C., Huang, Y., Lin, K. Y., Chang, Y. S., Lin, H. C., Lin, C. Y., & Hsiao, H. S. (2020). Developing a hands‐on activity using virtual reality to help students learn by doing. Journal of Computer Assisted Learning. 36(1), 46-60.
    Chen, Y. C. (2019). Effect of Mobile Augmented Reality on Learning Performance, Motivation, and Math Anxiety in a Math Course. Journal of Educational Computing Research, 57(7), 1695-1722.
    Choi, H. J., & Johnson, S. D. (2005). The effect of context-based video instruction on learning and motivation in online courses. The American Journal of Distance Education, 19(4), 215-227.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.), Hillsdale, NJ: Lawrence Erlbaum Associates Inc.
    Computer Science Teachers Association (CSTA) (2011). CSTA K-12 Computer Science Standards. The ACM K-12 Education Task Force. Retrieved from http://education2020.ca/Content/K-12ModelCurrRevEd.pdf
    Connor, K., A., Ferri, B., & Meehan, K. (2013). Models of Mobile Hands-On STEM Education. Paper presented at the 120th ASEE Annual Conference & Exposition (pp. 1-17).
    Costa, J. P., Wehbe, R. R., Robb, J., & Nacke, L. E. (2013, October). Time's up: studying leaderboards for engaging punctual behaviour. In Proceedings of the First International Conference on Gameful Design, Research, and Applications (pp. 26-33).
    Cropley, D. H. (2016). Creativity in engineering. In Multidisciplinary Contributions to the Science of Creative Thinking (pp. 155-173). Springer Singapore.
    Crumlish, C., & Malone, E. (2009). Designing social interfaces: Principles, patterns, and practices for improving the user experience. O'Reilly Media, Inc.
    Dagienė, V., & Futschek, G. (2008, July). Bebras international contest on informatics and computer literacy: Criteria for good tasks. In International Conference on Informatics in Secondary Schools-evolution and Perspectives (pp. 19-30). Springer, Berlin, Heidelberg.
    Dale, E. (1969). Audiovisual methods in teaching. NY: Dryden Press.
    Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011, September). From game design elements to gamefulness: defining gamification. In Proceedings of the 15th international academic MindTrek conference: Envisioning future media environments (pp. 9-15). ACM.
    Dewey, J. (1938). Experience and education. New York, NY: Macmillan.
    Dicheva, D., Dichev, C., Agre, G., & Angelova, G. (2015). Gamification in education: A systematic mapping study. Journal of Educational Technology & Society, 18(3), 75-88.
    Eguchi, A. (2016). RoboCupJunior for promoting STEM education, 21st century skills, and technological advancement through robotics competition. Robotics and Autonomous Systems, 75, 692-699.
    Fairchild, A. J., Horst, S. J., Finney, S. J., & Barron, K. E. (2005). Evaluating existing and new validity evidence for the Academic Motivation Scale. Contemporary Educational Psychology, 30(3), 331-358.
    Feki, M. A., Kawsar, F., Boussard, M., & Trappeniers, L. (2013). The internet of things: the next technological revolution. Computer, 46(2), 24-25.
    Fiore, S. M., Graesser, A., & Greiff, S. (2018). Collaborative problem- solving education for the twenty-first-century workforce. Nature Human Behaviour, 2(6), 367-369.
    Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior : An introduction to theory and research. Reading, MA: Addison- Wesley.
    Gandhi, H., & Varma, M. (2009). Strategic content learning approach to promote self-regulated learning in mathematics. Proceedings of epiSTEME, 3, 119-124.
    García-Peñalvo, F. J., & Mendes, A. J. (2018). Exploring the computational thinking effects in pre-university education. Computers in Human Behavior, 80, 407-411.
    Ge, Z. G. (2018). The impact of a forfeit-or-prize gamified teaching on e-learners’ learning performance. Computers & Education, 126, 143-152.
    Girasoli, A. J., & Hannafin, R. D. (2008). Using asynchronous AV communication tools to increase academic self-efficacy. Computers & Education, 51(4), 1676-1682.
    Google for Education (2015). Exploring Computational Thinking. Retrieved from https://edu.google.com/resources/programs/exploring-computational-thinking/#!ct-overview
    Govender, D. W., & Basak, S. K. (2015). An investigation of factors related to self-efficacy for java programming among computer science education students. Journal of Governance and Regulation, 4(4), 612-619.
    Graesser, A., Kuo, B. C., & Liao, C. H. (2017). Complex problem solving in assessments of collaborative problem solving. Journal of Intelligence, 5(2), 10-23.
    Groening, C., & Binnewies, C. (2019). “Achievement unlocked!”-The impact of digital achievements as a gamification element on motivation and performance. Computers in Human Behavior, 97, 151-166.
    Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38-43.
    Gu, X., Chen, S., Zhu, W., & Lin, L. (2015). An intervention framework designed to develop the collaborative problem-solving skills of primary school students. Educational Technology Research and Development, 63(1), 143-159.
    Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660.
    Hagger, M. S., Sultan, S., Hardcastle, S. J., & Chatzisarantis, N. L. (2015). Perceived autonomy support and autonomous motivation toward mathematics activities in educational and out-of-school contexts is related to mathematics homework behavior and attainment. Contemporary Educational Psychology, 41, 111-123.
    Hamari, J., Koivisto, J., & Sarsa, H. (2014). Social Motivations to Use Gamification: An Empirical Study of Gamifying Exercise. Proceedings of 2014 47th Hawaii International Conference on System Science (HICSS 2014), Hawaii, USA.
    Hampton, N. Z., & Mason, E. (2003). Learning disabilities, gender, sources of efficacy, self-efficacy beliefs, and academic achievement in high school students. Journal of School Psychology, 41(2), 101-112.
    Hamzah, W. M. A. F. W., Ali, N. H., Saman, M. Y. M., Yusoff, M. H., & Yacob, A. (2015). Influence of gamification on students’ motivation in using e-learning applications based on the motivational design model. International Journal of Emerging Technologies in Learning (iJET), 10(2), 30-34.
    Hanus, M. D., & Fox, J. (2015). Assessing the effects of gamification in the classroom: A longitudinal study on intrinsic motivation, social comparison, satisfaction, effort, and academic performance. Computers & Education, 80, 152-161.
    Harrison, A., Hulse, T., Manzo, D., Micciolo, M., Ottmar, E., & Arroyo, I. (2018, June). Computational thinking through game creation in STEM classrooms. In International Conference on Artificial Intelligence in Education (pp. 134-138). Springer, Cham.
    Hashim, H., Ali, M. N., & Samsudin, M. A. (2017). Adapting Thinking Based Learning Approach and 6E Instructional Model in Implementing Green STEM Project. In Proceedings of The International Conference On The Scholarship of Teaching and Learning 2017 (pp. 68-82). Universiti Utara Malaysia.
    Hesse, F., Care, E, Buder, J, Sassenberg, K, Griffin, P. (2015). A framework for teachable collaborative problem solving skills. In P. Griffin & E. Care (Eds.), Assessment and Teaching of 21st Century Skills: Methods and Approach (pp. 37-56). USA: Springer.
    Hoffman, B., & Spatariu, A. (2008). The influence of self-efficacy and metacognitive prompting on math problem-solving efficiency. Contemporary Educational Psychology, 33(4), 875-893.
    Hou H. T. (2010). Exploring the behavioural patterns in project-based learning with online discussion: Quantitative content analysis and progressive sequential analysis. The Turkish Online Journal of Educational Technology, 9(3), 52-60.
    Hou, H. T., Chang, K. E., & Sung, Y. T. (2008). Analysis of problem-solving-based online asynchronous discussion pattern. Journal of Educational Technology & Society, 11(1), 17-28.
    Hou, H. T., Chang, K. E., & Sung, Y. T. (2010). Applying lag sequential analysis to detect visual behavioural patterns of online learning activities. British Journal of Educational Technology, 41(2), 25-27.
    Hsiao, H. S., Chang, C. S., Lin, C. Y., Chang, C. C., & Chen, J. C. (2014). The influence of collaborative learning games within different devices on student’s learning performance and behaviours. Australasian Journal of Educational Technology, 30(6), 652-669.
    Hsiao, H. S., Lin, Y. W., Lin, K. Y., Lin, C. Y., Chen, J. H., & Chen, J. C. (2019). Using robot-based practices to develop an activity that incorporated the 6E model to improve elementary school students’ learning performances. Interactive Learning Environments, 1-15.
    Hsiao, H.S., & Lin, Y.N. (2019). Constructing Expert Programming Thinking Process in the Field of Information Engineering, Promoting the Planning of Operational Thinking Teaching Activities. Proceedings of International Conference on Computational Thinking Education 2019. (pp.24-29)
    Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to learn and how to teach computational thinking: Suggestions based on a review of the literature. Computers & Education, 126, 296-310.
    ISTE (2011). Operational Definition of Computational Thinking for K-12 Education. Retrieved from https://csta.acm.org/Curriculum/sub/Curr Files/CompThinkingFlyer.pdf
    Jackson, C. R. (2018). Validating and adapting the Motivated Strategies for Learning Questionnaire (MSLQ) for STEM courses at an HBCU. Aera Open, 4(4), 1-16.
    Julià, C., & Antolí, J. Ò. (2019). Impact of implementing a long-term STEM-based active learning course on students’ motivation. International Journal of Technology and Design Education, 29(2), 303-327.
    Kaniawati, D. S., & Suryadi, S. (2017). Integration of STEM education in learning cycle 6E to improve problem solving skills on direct current electricity. Proceeding of ICMSE, 3(1), 106-109.
    Kapp, K. M. (2012). The gamification of learning and instruction: game-based methods and strategies for training and education. John Wiley & Sons.
    Keller, J. M. (1979). Motivation and instructional design: A theoretical perspective. Journal of Instructional Development, 2(4), 26-34.
    Keller, J. M. (1983). Motivational design of instruction. Instructional design theories and models: An overview of their current status, 1(1983), 383-434.
    Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of Instructional Development, 10(3), 2-10.
    Keller, J. M. (2009). Motivational design for learning and performance: The ARCS model approach. Springer Science & Business Media.
    Kelley, T. R. (2010). Staking the claim for the ‘T’ in STEM. The Journal of Technology Studies, 36(1), 2-11.
    Klopp, T. J., Rule, A. C., Schneider, J. S., & Boody, R. M. (2014). Computer technology-integrated projects should not supplant craft projects in science education. International Journal of Science Education, 36(5), 865-886.
    Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development. FT press.
    Kortuem, G., Bandara, A. K., Smith, N., Richards, M., & Petre, M. (2012). Educating the Internet-of-Things generation. Computer, 46 (2), 53-61.
    Lai, C. H., & Chu, C. M. (2016, October). Development and Evaluation of STEM Based Instructional Design: An Example of Quadcopter Course. In International Symposium on Emerging Technologies for Education (pp. 176-191). Springer, Cham.
    Lai, Y. H., Chen, S. Y., Lai, C. F., Chang, Y. C., & Su, Y. S. (2019). Study on enhancing A IoT computational thinking skills by plot image-based VR. Interactive Learning Environments, 1-14.
    Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159-174.
    Law, K. M., Geng, S., & Li, T. (2019). Student enrollment, motivation and learning performance in a blended learning environment: The mediating effects of social, teaching, and cognitive presence. Computers & Education, 136, 1-12.
    Leftheriotis, I., Giannakos, M. N., & Jaccheri, L. (2017). Gamifying informal learning activities using interactive displays: an empirical investigation of students’ learning and engagement. Smart Learning Environments, 4(1), 2-20.
    Lent, R. W., Brown, S. D., & Larkin, K. C. (1984). Relation of self-efficacy expectations to academic achievement and persistence. Journal of Counseling Psychology, 31(3), 356-362.
    Li, K., & Keller, J. M. (2018). Use of the ARCS model in education: A literature review. Computers & Education, 122, 54-62.
    Lin, C. L., & Chiang, J. K. (2019). Using 6E Model in STEAM Teaching Activities to Improve University Students’ Learning Satisfaction: A Case of Development Seniors IoT Smart Cane Creative Design. Journal of Internet Technology, 20(7), 2109-2116.
    Lin, K. Y., Hsiao, H. S., Williams, P. J., & Chen, Y. H. (2019). Effects of 6E-oriented STEM practical activities in cultivating middle school students’ attitudes toward technology and technological inquiry ability. Research in Science & Technological Education,38 (1), 1-18.
    Lin, K. Y., Yu, K. C., Hsiao, H. S., Chang, Y. S., & Chien, Y. H. (2020). Effects of web-based versus classroom-based STEM learning environments on the development of collaborative problem-solving skills in junior high school students. International Journal of Technology and Design Education, 30(1), 21-34.
    Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011). Investigating and improving the models of programming concepts held by novice programmers. Computer Science Education, 21(1), 57-80.
    Maican, C., Lixandroiu, R., & Constantin, C. (2016). Interactivia. ro–A study of a gamification framework using zero-cost tools. Computers in Human Behavior, 61, 186-197.
    Mavroudi, A., Divitini, M., Gianni, F., Mora, S., & Kvittem, D. R. (2018, April). Designing IoT applications in lower secondary schools. In 2018 IEEE Global Engineering Education Conference (EDUCON) (pp. 1120-1126). IEEE.
    McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1(1), 30-46.
    Mekler, E. D., Brühlmann, F., Tuch, A. N., & Opwis, K. (2017). Towards understanding the effects of individual gamification elements on intrinsic motivation and performance. Computers in Human Behavior, 71, 525-534.
    Moos, D. C., & Azevedo, R. (2009). Learning with computer-based learning environments: A literature review of computer self-efficacy . Review of Educational Research, 79(2), 576-600.
    National Science and Technology Council. (2018). A Course For Success: America’s Strategy For Stem Education. Retrieved from https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf
    Nunnally, J.C. (1978). Psychometric Theory. New York: McGraw-Hill.
    Ortiz‐Rojas, M., Chiluiza, K., & Valcke, M. (2019). Gamification through leaderboards: An empirical study in engineering education. Computer Applications in Engineering Education, 27(4), 777-788.
    Papadakis, S., & Kalogiannakis, M. (2017). Using gamification for supporting an introductory programming course. the case of classcraft in a secondary education classroom. In Interactivity, Game Creation, Design, Learning, and Innovation (pp. 366-375). Springer, Cham.
    Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In Handbook of self-regulation (pp. 451-502). San Diego, CA: Academic Press.
    Pintrich, P. R., Smith, D. A. F., & McKeachie, W. J. (1989) A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ). Research and Future Directions, 28 (4), 253-260.
    Psycharis, S., & Kallia, M. (2017). The effects of computer programming on high school students’ reasoning skills and mathematical self-efficacy and problem solving. Instructional Science, 45(5), 583-602.
    Ramalingam, V., & Wiedenbeck, S. (1998). Development and validation of scores on a computer programming self-efficacy scale and group analyses of novice programmer self-efficacy. Journal of Educational Computing Research, 19(4), 367-381.
    Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004, June). Self-efficacy and mental models in learning to program. In Proceedings of the 9th annual SIGCSE conference on Innovation and technology in computer science education (pp. 171-175).
    Román-González, M., Moreno-León, J., & Robles, G. (2019). Combining assessment tools for a comprehensive evaluation of computational thinking interventions. In Computational Thinking Education (pp. 79-98). Springer, Singapore.
    Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human Behavior, 72, 678-691.
    Sailer, M., Hense, J. U., Mayr, S. K., & Mandl, H. (2017). How gamification motivates: An experimental study of the effects of specific game design elements on psychological need satisfaction. Computers in Human Behavior, 69, 371-380.
    Sailer, M., Hense, J., Mandl, J., & Klevers, M. (2014). Psychological perspectives on motivation through gamification. Interaction Design and Architecture Journal, 19, 28-37.
    Sailer, M., Homner, L. (2019). The Gamification of Learning: a Meta-analysis. Educational Psychology Review, 32, 77–112.
    Salinger, G., & Zuga, K. (2009). Background and history of the STEM movement. The overlooked STEM imperatives: Technology and engineering, 4-9. Reston, VA: ITEEA.
    Sanchez, D. R., Langer, M., & Kaur, R. (2020). Gamification in the classroom: Examining the impact of gamified quizzes on student learning. Computers & Education, 144, 1-16.
    Seaborn, K., & Fels, D. I. (2015). Gamification in theory and action: A survey. International Journal of Human-Computer Studies, 74, 14-31.
    Su, C. H., & Cheng, C. H. (2015). A mobile gamification learning system for improving the learning motivation and achievements. Journal of Computer Assisted Learning, 31(3), 268-286.
    Subhash, S., & Cudney, E. A. (2018). Gamified learning in higher education: A systematic review of the literature. Computers in Human Behavior, 87, 192-206.
    Tabatabaei, S. S., Ahadi, H., Bahrami, H., & Khamesan, A. (2017). The effects of motivated strategies for learning questionnaire (MSLQ) on students’ cognitive and meta-cognitive skills. NeuroQuantology, 15(2), 239-245.
    Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 1-22.
    Thurston, T. N. (2018). Design case: Implementing gamification with ARCS to engage digital natives. Journal on Empowering Teaching Excellence, 2(1), 23-52.
    Todd, R. H., Magleby, S. P., Sorensen, C. D., Swan, B. R., & Anthony, D. K. (1995). A survey of capstone engineering courses in North America. Journal of Engineering Education, 84(2), 165-174.
    Topalli, D., & Cagiltay, N. E. (2018). Improving programming skills in engineering education through problem-based game projects with Scratch. Computers & Education, 120, 64-74.
    Tough, A. (2002). The iceberg of informal adult learning. New Approaches to Lifelong Learning (NALL). 49-2002.
    Toulmin, C., & Groome, M. (2007). Building a science, technology, engineering, and math agenda. National Governors Association.
    Tritrakan, K., Kidrakarn, P., & Asanok, M. (2016). The Use of Engineering Design Concept for Computer Programming Course: A Model of Blended Learning Environment. Educational Research and Reviews, 11(18), 1757-1765.
    Trowbridge, L. W., & Bybee, R. W. (1990). Becoming a secondary school science teacher. Columbus, Ohio: Merrill.
    Tsai, M. J., Wang, C. Y., & Hsu, P. F. (2019). Developing the computer programming self-efficacy scale for computer literacy education. Journal of Educational Computing Research, 56(8), 1345-1360.
    Vanhanen, J., & Lehtinen, T. O. (2014). Software engineering problems encountered by capstone project teams. International Journal of Engineering Education, 30(6), 1461-1475.
    Varvara, G., & Konstantinos, C. (2018). Programming video games and simulations in science education: Exploring computational thinking through code analysis. Interactive Learning Environments,26(3), 386-401.
    Wang, L., Fu, L., & Hu, X. (2018). A series of scientific practice activities for increasing middle school students’ interest in robot. In Proceedings of the 2018 International Conference on Big data and education (pp. 112–115). Waikiki, Hawaii.
    Werbach, K., & Hunter, D. (2012). For the win: How game thinking can revolutionize your business. Wharton Digital Press.
    Werbach, K., & Hunter, D. (2015). The gamification toolkit: dynamics, mechanics, and components for the win. Wharton School Press.
    Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
    Wing, J. M. (2011). Research notebook: Computational thinking—What and why. The Link Magazine, 20-23.
    Woolfolk, A. E., & Hony, W. K. (1990). Prospective teachers’ sense of efficacy and beliefs about control. Journal of Educational Psychology, 82(1), 81-91.
    Wu, S. Y., Hou, H. T., Hwang, W. Y., & Liu, E. Z. F. (2013). Analysis of learning behavior in problem-solving-based and project-based discussion activities within the seamless online learning integrated discussion (SOLID) system. Journal of Educational Computing Research, 49(1), 61-82.
    Wu, T., Tai, Y. (2016). Effects of multimedia information technology integrated multi-sensory instruction on students’ learning motivation and outcome. Eurasia Journal of Science & Technology Education 12(4), 1065-1074.
    Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in K-9. Computers & Education, 141, 1-25.
    Zichermann, G. & Linder, J. (2013). The Gamification Revolution: How Leaders Leverage Game Mechanics to Crush the Competition. New York: McGraw Hill Professional.
    Zichermann, G., & Cunningham, C. (2011). Gamification by design: Implementing game mechanics in web and mobile apps. O'Reilly Media, Inc.
    Zollman, A. (2012). Learning for STEM literacy: STEM literacy for learning. School Science and Mathematics, 112(1), 12-19.

    無法下載圖示 電子全文延後公開
    2025/09/15
    QR CODE